

Rue des Combattants d'Afrique du Nord – Fréjus (83)

Diagnostic environnemental du milieu souterrain

Rapport

Réf: CSSPSE222204 / RSSPSE14021-01

AVI-FLD / CH / GRE

25/08/2022

BURGEAP Agence Sud-Est • Agroparc - 940, route de l'aérodrome - BP 51 260 – 84911 Avignon Cedex 9

 $\label{eq:total-energy} \textit{T\'el}: 04.90.88.31.92 \bullet \textit{Fax}: 04.90.88.31.63 \bullet \textit{burgeap.avignon@groupeginger.com}$

SIGNALETIQUE

CLIENT

RAISON SOCIALE	VILLE DE FREJUS	
COORDONNÉES	Place Camille Formigé 83600 Fréjus	
INTERLOCUTEUR	Patrick CAGNA	
(nom et coordonnées)	Directeur des Bâtiments Communaux.	
	Ville de FREJUS	
	06 79 65 26 41	
	p.cagna@ville-frejus.fr	

GINGER BURGEAP

ENTITE EN CHARGE DU DOSSIER	GINGER BURGEAP Agence Sud-Est
	Agroparc - 940, route de l'aérodrome
	BP 51 260 – 84911 Avignon Cedex 9
	Tél: 04.90.88.31.92 • <u>burgeap.avignon@groupeginger.com</u>
CHEF DU PROJET	Florence DEVIC
	Tél. 06 27 03 60 91
	E-mail: f.devic@groupeginger.com
COORDONNÉES Siège Social	Siège Social
SAS au capital de 1 200 000 euros dirigée par Claude	143, avenue de Verdun
MICHELOT	92442 ISSY LES MOULINEAUX
SIRET 682 008 222 003 79 / RCS Nanterre B 682 008	Tél: 01.46.10.25.70
222/ Code APE 7112B / CB BNP Neuilly – S/S 30004 01925 00010066129 29	E-mail: burgeap@groupeginger.com

RAPPORT

Offre de référence	PSSPSE18863-01 du 06/07/2022
Numéro et date de la commande	N°C22/04282 du 09/08/2022
Numéro de contrat / de rapport :	Réf : CSSPSE222204 / RSSPSE14021-01
Numéro d'affaire :	A60591
Domaine technique :	SP01

SIGNATAIRES

DATE	Indice	Rédaction Nom / signature		Vérification Nom / signature	Supervision / validation Nom / signature
25/08/2022	01	A. VIALLON	F. DEVIC	C. HUMBERT	G. REGNARD
		Market	for	and	

SOMMAIRE

		comique	
1.	Introd	uction	9
	1.1	Objet de l'étude	9
	1.2	Codification des prestations	12
	1.3	Documents de référence et ressources documentaires	13
2.	Visite	de site (A100)	14
	2.1	Localisation et environnement du site	14
	2.2	Description du site et des activités exercées	16
3.	Etude	historique, documentaire et mémorielle (A110)	
	3.1 3.2	Evolution générale du site - Etude des photographies aériennes	ent
	3.3	Historique des activités pratiquées sur le site	
	3.4	Historique des incidents et accidents	
	3.5	Données disponibles sur l'état du milieu souterrain (études antérieures)	
	3.6	Conclusion sur l'étude historique et identification des activités potentiellement polluantes	22
4.	Conte	xte environnemental et étude de vulnérabilité des milieux (A1	
		()	
	4.1	Contexte climatique	23
	4.2	Contexte géologique	
	4.3	Contexte hydrologique	24
	4.4	Contexte hydrogéologique	
	4.5	Utilisation de la ressource en eau dans le secteur d'étude	
	4.6	Risque d'inondation	
	4.7	Zones naturelles sensibles	
	4.8 4.9	Activités sensibles Recensement des sites BASIAS, BASOL, ARIA et SIS	
	4.10	Conclusion sur la vulnérabilité et la qualité des milieux	
5.	Invest	igations sur les sols (A200)	31
	5.1	Programme et stratégie d'investigations	
	5.2	Observations et mesures de terrain	
		5.2.1 Succession lithologique	
		5.2.2 Niveaux suspects et mesures PID	
	5.3	Stratégie et mode opératoire d'échantillonnage	
	5.4	Conservation des échantillons	
	5.5	Valeurs de référence pour les sols	
	5.6	Résultats et interprétation des analyses sur les sols	35
6.	Synthe	èse des impacts et schéma conceptuel	
	6.1	Synthèse des impacts dans les différents milieux	
	6.2	Schéma conceptuel	42
7.	Mesur	es simples de gestion	
	7.1	Gestion des pollutions et risques sanitaires	
	7.2	Gestion des terres excavées	
		7.2.1 Réemploi sur site	
8.	_	èse et recommandations	
	8.1	Synthèse	46

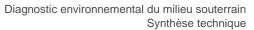
FIGURES

Figure 1 : Localisation générale de la zone de projet (Source : Présentation du COPIL du 19/05/2022)	9
Figure 2 : Plan schématique du projet envisagé du regroupement scolaire de la Baume à Fréjus - scénario n°1 (Source : Présentation du COPIL du 19/05/2022)	10
Figure 3 : Plan de la configuration actuelle du site (Source : Présentation du COPIL du 19/05/2022)	
Figure 4 : Localisation du site et usages alentours dans un rayon de 300 mètres	
Figure 5 : Topographie actuelle du site (Source : Présentation du COPIL du 19/05/2022)	
Figure 6 : Localisation des installations ou activités potentiellement polluantes actuelles	
Figure 7 : Extrait de la photographie aérienne de l'année 1951	
Figure 8 : Extrait de la photographie aérienne de l'année 1959	
Figure 9 : Extrait de la photographie aérienne de l'année 1970	
Figure 10 : Extrait de la photographie aérienne de l'année 1989	
Figure 11 : Extrait de la photographie aérienne de l'année 1995	
Figure 12 : Extrait de la photographie aérienne de l'année 2008	
Figure 13 : Extrait de la photographie aérienne de l'année 2014	
Figure 14 : Extrait de la photographie aérienne de l'année 2019	
Figure 15 : Localisation de l'activité recensée au droit de la zone d'étude	
Figure 16 : Carte géologique de Fréjus-Cannes au 1/50 000 (Source : BRGM n°1024)	
Figure 17 : Contexte hydrologique (Source : Géoportail)	
Figure 18 : Captage identifié à 1 km de la zone d'étude (Source : ARS PACA)	
Figure 19 : Zone naturelle remarquable dans un rayon d'1 km autour de la zone d'étude (Source :	20
Ginger Map)	27
Figure 20 : Localisation et synthèse des enjeux à protéger dans un rayon de 500 m autour du site	
Figure 21 : Localisation des sites pollués ou potentiellement pollués dans un rayon de 1 km autour	20
de l'emprise étudiéede l'emprise étudiée	29
Figure 22 : Localisation des investigations de sols	
Figure 23 : Localisation des investigations, mesures de terrain et indices de pollution relevés	
Figure 24 : Cartographie des anomalies dans les sols	
Figure 25 : Schéma conceptuel (usage futur)	
rigure 20 : Ochema conceptuel (usage futur)	++
TABLEAUX	
Tableau 1 : Ressources documentaires consultées	13
Tableau 2 : Localisation et environnement du site	14
Tableau 3 : Description du site	16
Tableau 4 : Contexte hydrologique	
Tableau 5 : Synthèse du contexte hydrogéologique	
Tableau 6 : Zones naturelles remarquables	
Tableau 7 : Caractéristiques des sites BASIAS et ICPE dans un rayon de 1 km autour du site étudié	
Tableau 8 : Synthèse sur la vulnérabilité et sensibilité des milieux	
Tableau 9 : Investigations et analyses réalisées sur les sols	
Tableau 10 : Niveaux suspects et résultats des mesures de terrain	
Tableau 10 : Niveaux suspects et resultats des mesures de terrain	
Tableau 11 : Résultats d'analyses sur éluats	
Tableau 12 : Nesultats d'arraiyses sur éluais	
Tableau To . Synthese des impacts mis en evidence	42

ANNEXES

- Annexe 1. Compte rendu de visite de site et reportage photographique
- Annexe 2. Propriétés physico-chimiques
- Annexe 3. Méthodes analytiques, LQ et flaconnage
- Annexe 4. Fiches d'échantillonnage des sols
- Annexe 5. Bordereaux d'analyses des sols
- Annexe 6. Glossaire

25/08/2022


Synthèse technique

CONTEXTE					
Client	VILLE DE FREJUS				
Nom / adresse du site	Rue des Combattants d'Afrique du Nord, Fréjus (83)				
Contexte de l'étude	Projet d'aménagement d	e site.			
Projet d'aménagement	Le scénario 1 de la présentation du projet par le COPIL en date du 19/05/2022 prévoit : • la conservation de l'Espace Boisé Classé (EBC) présent à l'ouest du site et la conservation du front de taille archéologique identifié à l'est du site ; • la création d'une zone tampon de protection acoustique et contre l'empoussièrement en bordure nord et est du site au vu de la présence à proximité des activités de carrière et de l'autoroute A8; • la construction des locaux des écoles Paul Roux et du Caïs, comprenant des espaces pédagogiques et récréatifs (cours de récréation, préaux) • la mise en réserve d'un espace dédié aux futurs agrandissements de l'école (capacité de 3 classes supplémentaires à proximité des installations projetées); • la construction d'une bibliothèque, d'une salle polyvalente, d'une salle de restauration et d'un jardin pédagogique; • l'aménagement d'espaces verts, de voiries et parkings de surface.				
	Superficie totale	52 000 m² environ			
	Parcelles cadastrales	n°396 et 414 section			
Informations sur le site lui-même	Propriétaire Exploitant et usage actuel	Pas d'exploitant, toutefois des poids-lourds empruntent les chemins du site pour se rendre à la carrière/décharge située au nord-est			
	Environnement proche	Industriel, tourisme, résidentiel, autoroute			
	Historique connu	Zone de dépôt gérée par la Mairie qui a fait l'objet de remblaiements réguliers depuis plusieurs années			
Statut réglementaire	Installation ICPE et régime	Non concernée.			
Ctatat regionicitain c	Situation administrative	Non concernée.			
Contexte géologique et hydrogéologique	Géologie	Les terrains rencontrés au droit de la zone d'étude sont constitués de la surface vers la profondeur : • remblais, présents de la surface à 4,3 m de profondeur selon les zones ; • grès roses ou verts.			
	Hydrogéologie	Une nappe est contenue dans les grès, le niveau de celle- ci est estimé à 7 m de profondeur. Elle n'est pas exploitée dans les environs du site.			
	Etudes antérieures	GINGER BURGEAP est déjà intervenu en 2019 sur ce site pour la réalisation d'investigations de sols concernant un autre projet envisagé. 7 fouilles à la pelle mécanique avaient été réalisées avec analyses d'échantillons de sols (Rapport RESISE09152 en date du 24/04/2019)			
Impacts connus sur le milieu souterrain	Impacts milieu sols	Investigations réalisées en 2019, absence d'impact mis en évidence – présence de remblais.			
	Impacts milieu eaux souterraines	Absence de données			
	Impacts milieu gaz du sol	Absence de données			

MISSION				
Intitulé et objectifs	Caractérisation des terres à excaver au droit du projet			
Historique du site et vulnérabilité des milieux	Les données recueillies ont permis de montrer que le site correspond à des parcelles boisées, puis en partie agricoles depuis 1951 environ. Une petite partie du site à l'est fait partie d'une décharge aérienne. Des investigations réalisées en 2019 par GINGER BURGEAP ont permis de mettre en évidence la présence de remblais au droit du site. L'étude historique et documentaire a permis de mettre en évidence l'absence d'installations et/ou activités susceptibles d'impacter la qualité des sols au droit de la zone d'étude, à l'exception d'une petite partie de la zone d'étude à l'est servant de zone de carrière/décharge aérienne. Des remblais sont également présents sur site au niveau de la plateforme B. Une ICPE située en amont du site pourrait avoir impacter la qualité des milieux au droit de la zone d'étude.			
Investigations réalisées	Sols	 15 fouilles à la pelle mécanique entre 0,7 et 2,4 m de profondeur. 		
Polluants recherchés	Sols Pack ISDI, 8 métaux, COHV, HCT C5-C10			
Résultats des investigations	Qualité du sous-sol et impacts identifiés	 Sols Aspect pollution /sanitaire Présence d'hydrocarbures C10-C40 au droit de P9. Teneurs de 250 et 290 mg/kg (0-2m). Présence de HAP au droit de P9. Teneurs de 3,75 et 10,19 mg/kg (0-2m). Traces de PCB au droit de P2 et P8. Teneurs de 0,009 mg/kg (0-1m). 		
	Schéma conceptuel	 Impacts identifiés: sols impactés au droit des remblais Enjeux à protéger: usagers futurs (enfants et professeurs) Voies d'expositions: non retenues 		
RECOMMANDATIONS				
Recommandation	Au regard des données disponibles, et dans l'hypothèse où les terres impactée identifiées au niveau de P2, P8 et P9 se situent dans l'emprise des terrassements recouvrements des sols nécessaires à la réalisation du projet du futur groupe scolaire l'état du site apparait compatible avec les usages projetés. Il conviendra néanmoins de vérifier l'absence de pollution résiduelle en fond de fouille après terrassements au droide P9 pour valider l'absence d'impact potentiel (impact non délimité verticalement sur condage). Les terres peuvent être considérées comme inertes à l'exception des remblais au droides fouilles P4, P5, P7, P8, P9 et P13. Si ces remblais impactés sont excavés et évacué hors site dans le cadre de la réalisation du projet d'aménagement, ils devront être évacué en filières agrées (a priori de type ISDI+, à confirmer par la filière).			
	Globalement, les terres terrassées peuvent être réutilisées sur site, à l'exception des terres terrassées au droit de P2, P8 et P9. (Celles-ci pourraient cependant être réutilisées			

sur site moyennant des études complémentaires permettant de préciser leurs conditions de réemploi : sous dallage, sous espaces verts...).

Avant réemploi des terres du site ou évacuation hors site, les éventuels déchets qu'elles contiennent (bois, plastiques, ferrailles, pneus, ...) devront être triés et évacués vers des filières adaptées.

1. Introduction

1.1 Objet de l'étude

Dans le cadre du projet « Nouveau Groupe Scolaire de la Baume », la ville de Fréjus projette la construction d'un complexe scolaire permettant de rassembler sur un même site deux écoles existantes sis Rue des Combattants d'Afrique du Nord à Fréjus (83).

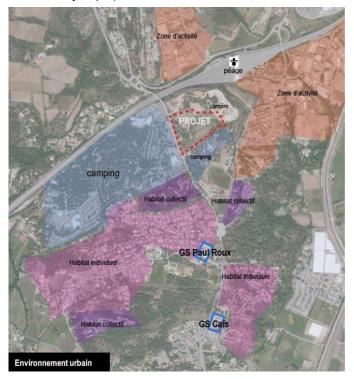


Figure 1 : Localisation générale de la zone de projet (Source : Présentation du COPIL du 19/05/2022)

A ce jour, 3 scénarios d'aménagement sont à l'étude. A la demande de la ville de Fréjus, notre étude se base sur le scénario 1 de la présentation du projet par le COPIL en date du 19/05/2022. Ce scénario prévoit :

- la conservation de l'Espace Boisé Classé (EBC) présent à l'ouest du site ;
- la conservation du front de taille archéologique identifié à l'est du site ;
- la création d'une zone tampon de protection acoustique et contre l'empoussièrement en bordure nord et est du site au vu de la présence à proximité des activités de carrière et de l'autoroute A8 ;
- la construction des locaux des écoles Paul Roux et du Caïs, comprenant des espaces pédagogiques et récréatifs (cours de récréation, préaux)
- la mise en réserve d'un espace dédié aux futurs agrandissements de l'école (capacité de 3 classes supplémentaires à proximité des installations projetées ;
- la construction d'une bibliothèque ;
- la construction d'une salle polyvalente ;
- la construction d'une salle de restauration ;
- la création d'un jardin pédagogique ;
- l'aménagement d'espaces verts ;
- l'aménagement de voiries et parkings de surface.

Le plan schématique du projet nous a été fourni par le client.

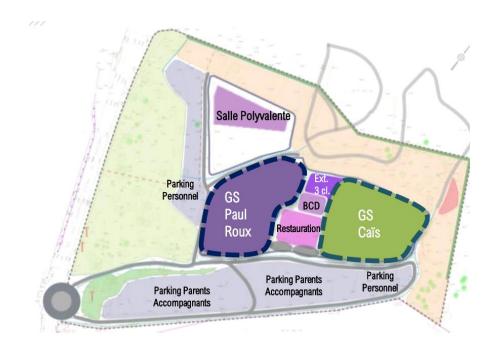


Figure 2 : Plan schématique du projet envisagé du regroupement scolaire de la Baume à Fréjus - scénario n°1 (Source : Présentation du COPIL du 19/05/2022)

La zone d'étude actuelle est caractérisée par une topographie comportant un fort dénivelé, avec une pente orientée vers l'ouest/sud-ouest (voir Erreur ! Source du renvoi introuvable.). Le site comporte des niveaux de terrasses, formant des plateformes (voir Erreur ! Source du renvoi introuvable.), qui ont anciennement été réalisées via des déblais/remblais. Le projet a été pensé dans l'optique d'utiliser la topographie existante du site.

Il est à noter que l'historique du site ou la nature de ces remblais ne sont pas connus.

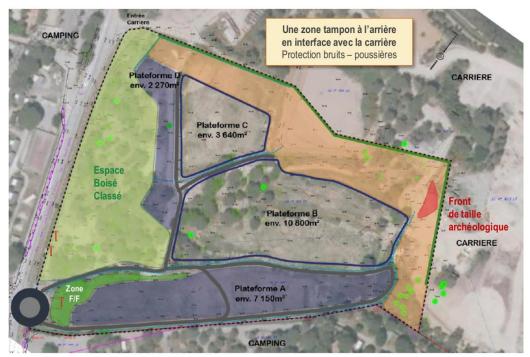


Figure 3 : Plan de la configuration actuelle du site (Source : Présentation du COPIL du 19/05/2022)

Dans ce cadre et au vu de la présence avérée de remblais, la ville de Fréjus a missionné GINGER BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain, objet de ce rapport, faisant suite à notre offre référencée PSSPSE18863 du 06/07/2022.

Cette étude vise à identifier les éventuelles sources de pollution et à évaluer leurs conséquences sur le projet.

1.2 Codification des prestations

Le présent rapport est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la **norme AFNOR NF X 31-620 1, 2 et 5 : décembre 2021 - « Qualité du sol – Prestations de services relatives aux sites et sols pollués »**, pour le domaine A : « Etudes, assistance et contrôle » et le domaine D : « Attestation de prise en compte des mesures de gestion de la pollution des sols et des eaux souterraines dans la conception des projets de construction ou d'aménagement ».

			•		J
élén (A)	stations nentaires cernées	Objectifs	gi (A	restations obales a) oncernées	Objectifs
\boxtimes	A100	Visite du site		AMO	
	A110	Etudes historiques, documentaires et mémorielles		AMO en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études. Le site relève-t-il de la politique nationale de gestion des sites
	A120	Etude de vulnérabilité des milieux		Levée de doute	pollués, ou bien est-il « banalisable » ? Réaliser les études historiques, documentaires et de
	A130	Elaboration d'un programme prévisionnel d'investigations		INFOS	vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations. Investiguer des milieux (sols, eaux souterraines, eaux
	A200	Prélèvements, mesures, observations et/ou analyses sur les sols		DIAG	superficielles et sédiments, gaz du sol, air ambiant) afin d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de transfert, les milieux d'exposition des populations et identifier
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines	-		les opérations nécessaires pour mener à bien le projet Etudier, en priorité, les modalités de suppression des
	A220	Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments		PG Plan de gestion	pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée) et à gérer les pollutions résiduelles et diffuses. Réalisation
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol		dans le cadre d'un	d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), validés d'un point de vue sanitaire (A320). Préconisations sur la nécessité de réaliser, ou non, les prestations un plan de conception des travaux (PCT), un contrôle de la mise en œuvre des mesures (CONT), un suivi environnemental (SUIVI), la mise en place de restrictions d'usage et la définition des modalités de leur mise en œuvre . Précision des mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques		d'aménagement d'un site	
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires			La prestation IEM est mise en œuvre en cas de la mise en évidence d'une pollution historique sur une zone où l'usage est fixé (installation en fonctionnement, quartier résidentiel,
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées		IEM Interprétation de	etc.), la mise en évidence d'une pollution hors des limites d'un site, un signal sanitaire Comparable à une photographie de l'état des milieux et des usages, la prestation IEM vise à s'assurer que l'état des milieux d'exposition est compatible avec les usages existants [9]. Elle permet de distinguer les situations qui ne nécessitent aucune action particulière, peuvent faire l'objet d'actions simples de gestion pour rétablir la compatibilité entre l'état des milieux et leurs usages constatés, nécessitent la mise en
	A270	Interprétation des résultats des investigations		l'Etat des Milieux	
	A300	Analyse des enjeux sur les ressources en eaux			
	A310	Analyse des enjeux sur les ressources environnementales		SUIVI	ceuvre d'un plan de gestion Suivi environnemental
	A320	Analyse des enjeux sanitaires		BQ	Interpréter les résultats des données recueillies au cours des quatre dernières années de suivi
	A330	Identification des différentes options de gestion possibles et réalisation d'un bilan		Bilan quadriennal	Mettre à jour l'analyse des enjeux concernés par le suivi sur la période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires
		coûts/avantages		Controles	Vérifier la conformité des travaux d'investigation ou de surveillance Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	A400	Dossiers de restriction d'usage, de servitudes		VERIF Evaluation du passif environnemental	Expertise dans le domaine des sites et sols pollués Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise
			Pr (D	restations globales)) concernées	Objectifs
				ATTES-ALUR	Attestation à joindre aux demandes de permis de construire (PC) ou d'aménager dans les secteurs d'information sur les sols (SIS) ou au second changement d'usage (loi ALUR).

1.3 Documents de référence et ressources documentaires

Les documents utilisés pour la réalisation de cette étude sont présentés dans le Tableau 1.

Tableau 1 : Ressources documentaires consultées

Organisme consulté	Nature des données/références
Client	Préprogramme pour la construction du nouveau groupe scolaire de la Baume – COPIL en date du 19/05/2022 Plan de récolement de la position des sondages – CONSORTS BADAUT en date du 27/03/2019
IGN	Photographies aériennes des années 1951, 1959, 1970 1989, 1995, 2008, 2014 et 2019
IGN	Topographie, situation géographique
ARS du VAR	Captages d'eau potable
BRGM/Infoterre	Géologie et captages, BASIAS
GEORISQUES	Recensement des risques naturels et technologiques, cavités souterraines, établissements sensibles
Infoclimat	Données météorologiques
Ministère en charge de l'Environnement / BASOL (Sites pollués)	Localisation et situation des sites potentiellement pollués
Ministère en charge de l'Environnement / BASIAS	Localisation, activités et situation des sites industriels et activités de service
Ministère en charge de l'Environnement / CARMEN (base de données)	Zones naturelles remarquables
Carte géologique	BRGM – n°1024 de Fréjus-Cannes au 1/50000ème
Carte hydrogéologique	Référentiel Masse d'Eau souterraine – Rapportage 2016, BRGM
Etudes antérieures	Diagnostic environnemental du milieu souterrain – GINGER BURGEAP (RESISE09152-01 en date du 24/04/2019) Etude géotechnique préalable – GINGER CEBTP (CNI2.RJ.856.0032 en date du 24/04/2019)

2. Visite de site (A100)

2.1 Localisation et environnement du site

Tableau 2: Localisation et environnement du site

Adresse du site	Rue des combattants d'Afrique du Nord – Fréjus (83)
Superficie totale	52 000 m² environ
Parcelles cadastrales	n°396 et 414 section AR
Propriétaire du site	Ville de Fréjus
Exploitant du site (et activité de l'exploitant)	Pas d'exploitant, toutefois des poids-lourds empruntent les chemins du site pour se rendre à la carrière située au nord-est
Altitude moyenne / Topographie	Entre + 45 et 60 m NGF (Nivellement Général de la France) / terrain à forte dénivelée (pente moyenne : 7 %) vers le sud et l'est.
Abords du site (Figure 4)	Au nord : Friche en partie boisée, puis l'autoroute A8, puis une zone commerciale et industrielle ; Au sud : Camping les Pins Parasols puis des habitats individuels ; A l'est : Carrière puis une zone commerciale ; A l'ouest : Campings le Fréjus et le Baume Campsite.

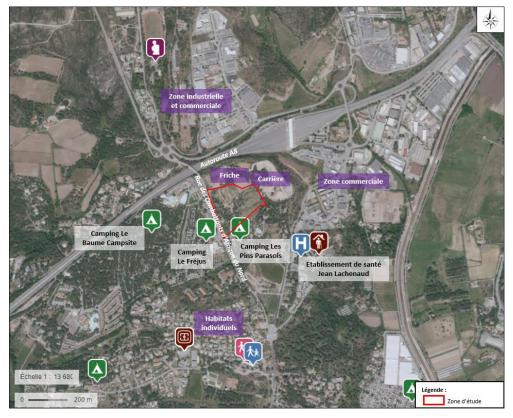


Figure 4 : Localisation du site et usages alentours dans un rayon de 300 mètres

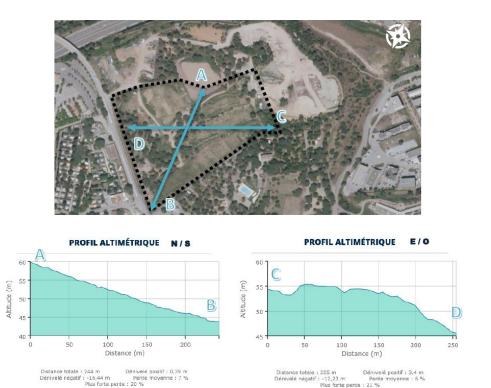


Figure 5 : Topographie actuelle du site (Source : Présentation du COPIL du 19/05/2022)

2.2 Description du site et des activités exercées

La visite du site a été réalisée le 3 août 2022, par Monsieur P. NERIS de GINGER BURGEAP.

Les photographies et le compte-rendu de la visite de site sont présentés en Annexe 1. Les informations recueillies sont synthétisées dans le Tableau 3 et sur la

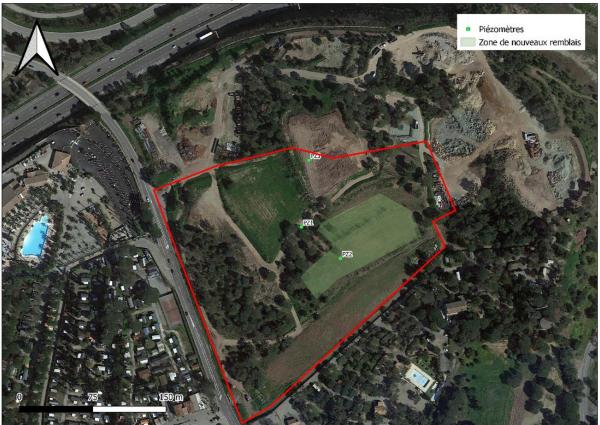


Figure 6 ci-dessous.

Tableau 3 : Description du site

Aménagements / occupation des sols	Parcelles boisées et agricoles. Des chemins sont présents et empruntés par des poids-lourds de rendant à la carrière située au nord-est. Aucun bâti n'est présent sur site. Trois piézomètres sont présents dans la partie centrale de la zone d'étude. Des dépôts de remblais ont également été constatés au niveau de la plateforme B.	
Topographie	Le site présente un fort dénivelé vers le sud et l'est. Celui-ci est également divisé en différentes plateformes.	
Clôture / surveillance / conditions d'accès	Site clôturé, non surveillé.	
Etat des revêtements	Sols non recouverts, présence de remblais.	
Activités et/ou installations potentiellement polluantes	Aucune activité ou installation polluante recensée sur le site hormis la présence de remblais au niveau de la plateforme B (au centre) et la circulation de poids-lourds en direction de la carrière au nord-est.	
Gestion des effluents	Non concerné.	

Présence et état des réseaux et caniveaux	Aucune collecte des eaux de pluies n'est visible sur la parcelle. Les eaux météoriques ruissellent vers le sud et l'est. Les DICT montrent l'absence de réseaux enterrés au droit du site.			
Traces de pollution au sol	Aucune trace de pollution (odeur, tâches, etc.) n'a été recensée.			

A l'issue de la visite, aucune activité susceptible d'impacter la qualité du milieu souterrain a été identifiée hormis la présence de remblais au niveau de la plateforme B (au centre) et la circulation de poids-lourds en direction de la carrière au nord-est.

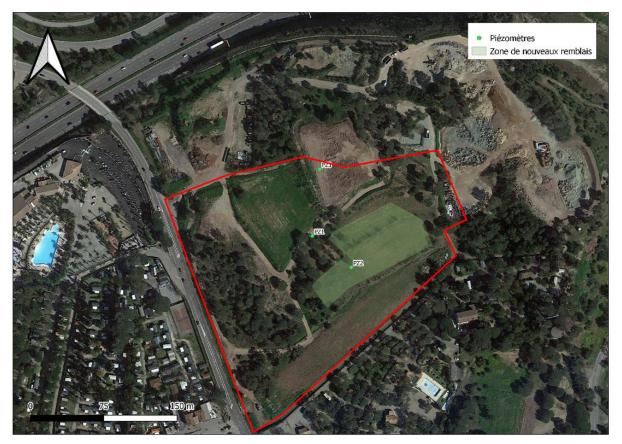


Figure 6 : Localisation des installations ou activités potentiellement polluantes actuelles

3. Etude historique, documentaire et mémorielle (A110)

3.1 Evolution générale du site - Etude des photographies aériennes

D'après les photographies aériennes anciennes des années 1951, 1959, 1970 1989, 1995, 2008, 2014 et 2019, le site correspond à des parcelles boisées et agricoles depuis 1951.

Les clichés (ou extrait de clichés) les plus significatifs des évolutions historiques du site et de ses environs figurent ci-après.

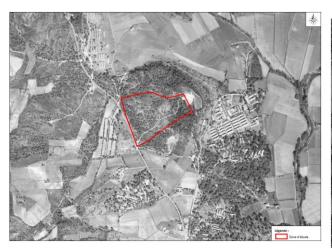


Figure 7 : Extrait de la photographie aérienne de l'année 1951

Le site d'étude correspond à des parcelles boisées.

Une zone d'exploitation de carrière se situe à l'est. La zone d'étude est entourée de champs agricoles, de bois et de terrains militaires.

Figure 9 : Extrait de la photographie aérienne de l'année 1970

La partie sud du site est déboisée, remplacée par des terres agricoles.

Figure 8 : Extrait de la photographie aérienne de l'année 1959

Une zone au sud du site est exploitée pour la carrière.

L'autoroute A8 et la route départementale D4 sont maintenant construites.

Figure 10 : Extrait de la photographie aérienne de l'année 1989

Un camping apparaît au sud de la zone d'étude. L'exploitation de la carrière à l'est est à l'arrêt.

Figure 11 : Extrait de la photographie aérienne de l'année 1995

Le péage du Capitou au nord-est est construit.

Figure 12 : Extrait de la photographie aérienne de l'année 2008

Des parties du site sont déboisées.

De nombreuses villas et lotissements apparaissent à l'ouest du site. La zone militaire précédemment présente à l'est n'existe plus.

Figure 13 : Extrait de la photographie aérienne de l'année 2014

Des parties de la zone d'étude sont maintenant cultivées. Au nord-est du site, une décharge est visible.

Figure 14 : Extrait de la photographie aérienne de l'année 2019

La décharge au nord-est englobe une petite partie de la zone d'étude à l'est : des zones de stockage aériennes sont visibles.

Le site est en l'état depuis 1995 environ.

L'analyse des photographies aériennes ne montre aucune modification ou installation susceptible d'influencer la qualité du milieu souterrain, à l'exception d'une petite partie de la zone d'étude à l'est servant de carrière/décharge aérienne.

3.2 Historique des installations classées pour la protection de l'environnement

Aucune activité classée pour la protection de l'environnement n'a été exploitée au droit du périmètre d'étude.

3.3 Historique des activités pratiquées sur le site

Suite à l'étude historique et compte tenu des informations recueillies, une activité de décharge appartenant à la carrière a été recensée sur une petite partie à l'est de la parcelle.

Figure 15 : Localisation de l'activité recensée au droit de la zone d'étude

Le site n'est pas classé pour la protection de l'environnement, ni référencé dans les bases de données BASIAS ou BASOL.

Des demandes de documentations ont été réalisées aux archives départementales et à la préfecture du Var aucune réponse ne nous a été transmise à ce jour.

3.4 Historique des incidents et accidents

Aucun accident ou plainte de riverain n'a été porté à notre connaissance.

3.5 Données disponibles sur l'état du milieu souterrain (études antérieures)

GINGER BURGEAP est déjà intervenu en 2019 sur ce site pour la réalisation d'investigations de sols concernant un autre projet envisagé. 6 fouilles à la pelle mécanique et un sondage à la tarière mécanique avaient été réalisées avec analyses de 7 échantillons de sols pour les composants suivants : Pack ISDI, HCT C10-C40, HAP, BTEX, PCB et 8 métaux.

Les résultats n'ont pas mis en évidence d'impact. Des traces en HAP et PCB avaient été détectées au droit d'un seul sondage situé au niveau de la plateforme B.

Néanmoins la présence de remblais est avérée : ils reposent sur des grès roses ou verts à l'origine de refus entre 0,6 et 4,3 m de profondeur.

3.6 Conclusion sur l'étude historique et identification des activités potentiellement polluantes

Les données recueillies ont permis de montrer que le site correspond à des parcelles boisées, puis en partie agricoles depuis 1951 environ. Une petite partie du site à l'est fait partie d'une décharge/carrière aérienne.

Le site n'est pas classé pour la protection de l'environnement, ni référencé dans les bases de données BASIAS ou BASOL.

Des investigations réalisées en 2019 par GINGER BURGEAP ont permis de mettre en évidence la présence de remblais au droit du site.

L'étude historique et documentaire a permis de mettre en évidence l'absence d'installations et/ou activités susceptibles d'impacter la qualité des sols au droit de la zone d'étude, à l'exception d'une petite partie de la zone d'étude à l'est servant de décharge/carrière aérienne.

Bgp290/25

4. Contexte environnemental et étude de vulnérabilité des milieux (A120)

4.1 Contexte climatique

La pluviométrie annuelle de la ville de Fréjus est de 820 mm, ce qui est une pluviométrie comparable à la pluviométrie moyenne annuelle en France métropolitaine qui est de 900 mm.

Le régime des pluies est inégalement réparti entre les hivers pluvieux et des étés secs.

Les vents dominants sont orientés vers le sud-est.

4.2 Contexte géologique

D'après la carte géologique n°1024 de Fréjus-Cannes au 1/50 000 et les données archivées sur le serveur de la banque de données Infoterre, les formations géologiques susceptibles d'être rencontrées au droit de la zone d'étude sous d'éventuels remblais appartiennent à la formation du Mitan (Permien) : ensemble de grès roses ou verts puis d'argiles marron micacées.

Lors des investigations réalisées par GINGER BURGEAP en 2019, la succession des formations géologiques observées au droit du site était :

- des remblais (terre végétale en surface, puis un mélange de sables, graviers et blocs avec la présence d'argile par endroit) entre la surface et 0,6 à 4,3 mètres de profondeur selon les zones ;
- des grès roses ou verts.

Compte tenu de la perméabilité des formations superficielles, les sols du site sont jugés potentiellement vulnérables aux transferts en profondeur des pollutions issues de la surface.

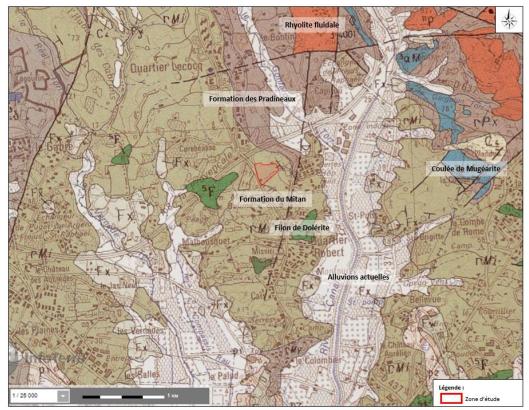


Figure 16 : Carte géologique de Fréjus-Cannes au 1/50 000 (Source : BRGM n°1024)

4.3 Contexte hydrologique

Le réseau hydrographique de la zone d'étude est résumé dans le Tableau 4 et localisé en Figure 17.

Tableau 4 : Contexte hydrologique

Entité hydrologique	Typologie	Distance et position /site	Sens d'écoulement	Affluent/confluent	Usage en aval hydraulique/site	Vulnérabilité
le Compassis	Ruisseau	A 1,2 km à l'ouest	Du nord vers le sud	Se jette dans la Grande Garonne au sud	Aucun usage identifié	Non vulnérable au vu de sa distance et de sa position vis- à-vis du site d'étude
le Gonfaron	Ruisseau	A 650 m au nord-est	Du nord vers le sud	Se jette dans le Reyran à l'est	Aucun usage identifié	Non vulnérable au vu de sa distance et de sa position vis- à-vis du site d'étude
le Reyran	Fleuve	A 890 m au sud-est	Du nord vers le sud	Se jette dans la Loisirs mer Méditerranée (baignade, pêche)		Non vulnérable au vu de sa distance et de sa position vis- à-vis du site d'étude

Figure 17 : Contexte hydrologique (Source : Géoportail)

4.4 Contexte hydrogéologique

Le Tableau 5 présente le contexte hydrogéologique du site.

Tableau 5 : Synthèse du contexte hydrogéologique

Aquifère	Typologie	Sens d'écoulement supposé	Profondeur du toit de la nappe (m/sol)	Relation nappe/eaux superficielles	Usage au droit du site	Vulnérabilité
Formation gréseuse et marno- calcaire de l'avant-pays provençal (FRDG520)	Entité géologique à parties libres et captives.	Vers le sud- est.	7 (BSS002JWHT à 300 m au sud-ouest du site)	En relation avec les eaux superficielles.	Aucun usage local n'est identifié.	Fortement vulnérable

4.5 Utilisation de la ressource en eau dans le secteur d'étude

Le site étudié n'est pas inclus dans un périmètre de protection de captage.

Rappelons que les cours d'eau et les nappes d'eau souterraine sont des voies de transport possibles des polluants. Les captages d'eau, et plus particulièrement les captages pour l'alimentation en eau potable (AEP), sont donc des enjeux à protéger d'une potentielle pollution en provenance des sols et/ou du sous-sol.

Aucun captage en eau ne se situe dans un rayon d'1 km autour du site d'étude.

Des captages en eaux souterraines pour l'eau potable sont présents à plus d'1 kilomètre du site au nord-est et au sud-est de la zone d'étude. Ceux-ci semblent peu vulnérables vis-à-vis de transferts de pollutions depuis le site étant donné leur distance et position hydrogéologique.

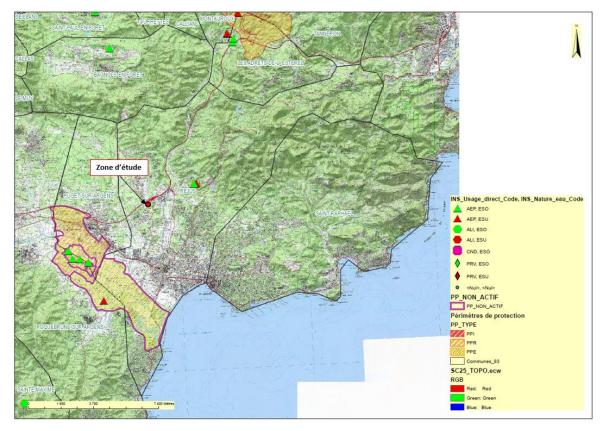


Figure 18 : Captage identifié à 1 km de la zone d'étude (Source : ARS PACA)

La visite des environs du site n'a pas permis d'exclure la présence de puits privés à proximité du site.

4.6 Risque d'inondation

Le site étudié ne se trouve pas en zone inondable d'après le PPRI (Plan de Prévention du Risque d'Inondation) de la ville de Fréjus.

Le site n'est pas sujet aux inondations par remontée de nappe.

4.7 Zones naturelles sensibles

Les zones naturelles remarquables les plus proches du site (moins de 1 km) sont listées dans le Tableau 6Erreur! Source du renvoi introuvable. et localisées sur la Figure 19.

Tableau 6 : Zones naturelles remarquables

	Référence (Erreur ! Source du renvoi introuvable.)	Nom de la zone naturelle	Distance et position hydrogéologique par rapport au site					
Inventaires	Inventaires							
ZNIEFF de type 2 de deuxième génération	83198100	Bois de Palayson et Terres Gastes	Amont, à 500 m au nord-ouest.					

Figure 19 : Zone naturelle remarquable dans un rayon d'1 km autour de la zone d'étude (Source : Ginger Map)

Le site étudié n'est pas inclus dans une zone naturelle remarquable.

A la vue de sa distance au site et de sa position géographique, la ZNIEFF située dans un rayon d'1 km aux alentours du site ne semble pas être vulnérable à une pollution en provenance de celui-ci.

4.8 Activités sensibles

Plusieurs activités sensibles ont été localisées dans un rayon de 500 m autour de la zone d'étude.

Le futur projet d'aménagement prévoit la réalisation d'un complexe scolaire regroupant sur un même site deux écoles existantes. Il s'agit donc d'un futur projet d'établissement sensible.

Toute la zone ouest et sud du site d'étude est entourée de campings avec notamment les campings Le Baume Campsite, Le Fréjus et Les Pins Parasols.

Un établissement de santé se situe également au sud-est de la zone d'étude à environ 400m.

À la vue de leur distance, ces établissements pourraient être sensibles à une pollution possible en provenance de la zone d'étude.

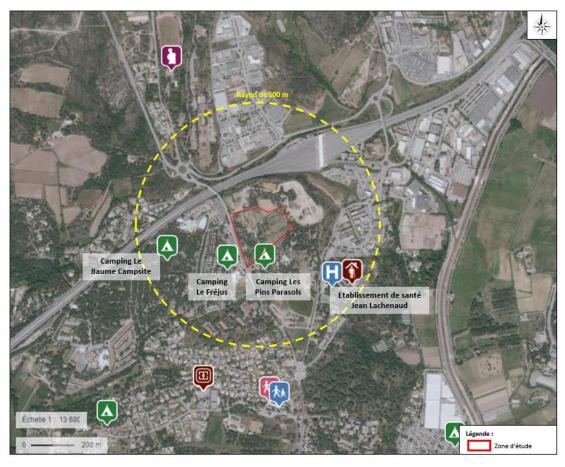


Figure 20 : Localisation et synthèse des enjeux à protéger dans un rayon de 500 m autour du site

4.9 Recensement des sites BASIAS, BASOL, ARIA et SIS

L'état environnemental de la zone d'étude est évalué via les bases de données Géorisques (BASIAS (inventaire des anciens sites industriels et activités de service), BASOL (recensement des sites potentiellement pollués appelant à une action des pouvoirs publics), SIS (secteurs d'information sur les sols)) et ARIA (incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'Environnement).

Aucun site BASOL, SIS et ARIA n'ont été recensés au droit, ni dans un rayon d'1 km autour de la zone d'étude.

Tableau 7 : Caractéristiques des sites BASIAS et ICPE dans un rayon de 1 km autour du site étudié

BASIAS	ICPE	Référence	Raison sociale	Régime	Activité	Distance et position par rapport au site ¹
\boxtimes		PAC8302057	Station-service TOTAL	-	Commerce de gros, de détail, de désserte de carburants en magasin spécialisé	Aval, à 680 m au sud.

¹ en référence au sens d'écoulement présumé de la nappe superficielle.

BASIAS	ICPE	Référence	Raison sociale	Régime	Activité	Distance et position par rapport au site ¹
	\boxtimes	-	ECOPOLE	Autre régime	Production de béton et enrobé	Amont, à 500 m au nord.
	\boxtimes	-	SOFOVAR	Autorisation – Seveso niveau 3	Collecte et stockage de déchets dangereux	Latéral, à 700 m au nord-est.
	\boxtimes	-	SOFOVAR	Autorisation – Seveso niveau 3	Collecte et stockage de déchets dangereux	Latéral, à 930 m au nord-est.

Une ICPE se situe en amont hydrogéologique de la zone d'étude. Il s'agit de l'entreprise ECOPOLE qui produit du béton et de l'enrobé et qui pourrait donc avoir impacté les terrains au droit du site.

Compte tenu de leur position géographique et de leur distance au site, le site BASIAS et les deux autres ICPE ne semblent pas avoir impacté les terrains au droit de la zone d'étude.

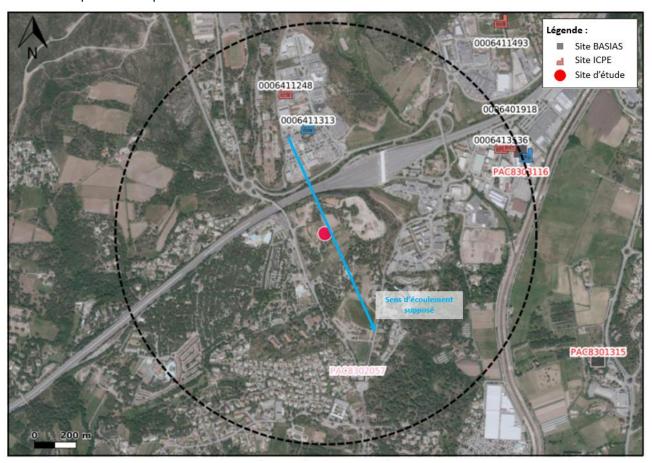


Figure 21 : Localisation des sites pollués ou potentiellement pollués dans un rayon de 1 km autour de l'emprise étudiée

4.10 Conclusion sur la vulnérabilité et la qualité des milieux

Les données recueillies montrent que la qualité des sols et des eaux au droit du site étudié pourrait avoir été dégradée du fait de la présence d'un site ICPE identifié dans son environnement proche et en amont hydrogéologique. L'activité de carrière/décharge présente également sur une petite partie a pu émettre dans l'environnement principalement des métaux. Des remblais sont également présents au niveau de la plateforme B de la zone d'étude.

La vulnérabilité des milieux est synthétisée dans le Tableau 8 ci-dessous.

Tableau 8 : Synthèse sur la vulnérabilité et sensibilité des milieux

Milieux	Vulnérabilité	Justification	Sensibilité	Justification
Sols	Forte	Sols perméables	Forte	Projet d'aménagement prévoyant la construction d'un établissement scolaire
Eaux souterraines	Forte	Eau peu profonde, sols perméables	Faible	Aucun captage à proximité
Eaux superficielles	Faible	Distance par rapport au site	Modérée	Usage de baignade, loisirs, pêche
Milieux naturels	Faible	Distance par rapport au site	Faible	Distance par rapport au site

5. Investigations sur les sols (A200)

5.1 Programme et stratégie d'investigations

Le programme des investigations est présenté dans le Erreur! Source du renvoi introuvable..

Date d'intervention	03/08/2022
Prestataire de forage Technique de forage	CEBTP Pelle mécanique
Investigations menées	Cf. Tableau 9 et Figure 22 15 fouilles à la pelle mécanique ont été réalisées entre 0,7 et 2,4 m de profondeur Les sondages ont été suivis en continu par un collaborateur spécialisé de GINGER BURGEAP qui a effectué les prélèvements
Ecarts au programme prévisionnel	Les profondeurs de fouilles initialement prévues étaient de 2 m ; 6 fouilles (P2, P5, P10, P11, P14 et P15) n'ont pu atteindre cette profondeur du fait de refus sur le grès.
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : sans objet. Déchets de chantier : éliminés en filières appropriées.
Laboratoire d'analyses	AGROLAB reconnu par le COFRAC

Tableau 9 : Investigations et analyses réalisées sur les sols

	Investigations					An	alyses			
Milieux reconnus	Prestations /méthode	Localisation	Objectifs	Qté	Prof. (ml)	Total ml	Mesure s in situ	Analyses conformément à l'arrêté du 12/12/2014 - Pack ISDI	8 métaux et métalloïdes	COHV + HCT C5-C10
Sols	Fouilles à la pelle	Caractériser la qualité des sols Caractériser les terres à excaver	8	2	16	PID	11	11	11	
	mécanique	Au droit des futurs parking	et définir une filière de traitement ou de valorisation	4	2	8	PID	5	5	-
		Au droit des futurs espaces verts		3	2	6	PID	4	4	-
			TOTAL Sols	15		30		20	20	11

Les propriétés chimiques des polluants recherchés, les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en **Annexe 2** et en **Annexe 3**.

Figure 22 : Localisation des investigations de sols

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage :

- succession lithologique;
- présence ou non de niveaux jugés suspects (traces de souillures, caractéristiques organoleptiques anormales (odeur, couleur, texture), présence de matériaux de type déchets, mâchefers, verre, bois...);
- présence ou non de composés organiques volatils dans les gaz des sols (évaluée au niveau de chaque échantillon prélevé au moyen d'un détecteur à photo-ionisation (PID) régulièrement calibré).

Les échantillons ont ensuite été sélectionnés pour analyses chimiques en laboratoire (cf. § 5.3).

5.2.1 Succession lithologique

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante, de la surface vers la profondeur :

- des remblais, entre la surface et 0,5 à 1 mètre de profondeur selon les zones ;
- des limons sableux à argiles de 0,5 à 2,4 mètres de profondeur selon les zones.

Des grès sont parfois mis en évidence sous les limons ou remblais entre 0,7 et 1,2 mètre de profondeur.

Aucune venue d'eau n'a été constatée sur l'ensemble des sondages. Cependant, 3 fouilles (P5, P7 et P9) présentaient des terres humides à très humides localement.

5.2.2 Niveaux suspects et mesures PID

Les caractéristiques des niveaux suspects et les résultats des tests de terrain positifs (mesures PID) sont reportés dans le Tableau 10. L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en **Annexe 5**.

Tableau 10 : Niveaux suspects et résultats des mesures de terrain

Fouille	Profondeur	Lithologie	Indices de pollution	Mesure de terrain
P1	1-2 m	Limons à limons argileux	Bois	PID: 0,0 ppmV
P2	0-1 m	Remblais : limons graveleux	Ferrailles, câbles en acier	PID: 0,2 ppmV
P3	1-2 m	Limons argileux	Bois, plastiques, pneus	PID: 0,5 ppmV
D4	0-1 m	Remblais argilo-limoneux	Bois, enrobé et plastiques	PID: 1,0 ppmV
P4	1-1,4 m	Limons sableux	-	PID: 0,5 ppmV
P5	0-0,4 m	Argiles humides et graviers	-	PID: 0,0 ppmV
P6	0-1 m	Limons sableux	-	PID: 0,3 ppmV
DZ	0-1 m	Remblais limono-sableux à argileux	Plastiques, odeur de M.O.	PID: 0,2 ppmV
P7	1-2 m	Argiles limoneuses	Matière organique, racines	PID: 0,9 ppmV
P8	1-2 m	Limons sableux	Bois noirs	PID: 0,0 ppmV
P9	0-1 m	Argiles limoneuses avec blocs	Traces noirâtres sans odeur	PID: 0,0 ppmV
P10	0-0,8 m	Limons et graves	-	PID: 0,6 ppmV
P11	0-0,8 m	Sédiments avec sables et graves	-	PID: 0,5 ppmV

Fouille	Profondeur	Lithologie	Indices de pollution	Mesure de terrain
P12	1-2 m	Limons argileux	Câbles électriques	PID: 0,0 ppmV
P13	0-1 m	Remblais : limons sablo-graveleux	Morceaux de tuiles	PID: 0,0 ppmV
P14	0-0,7 m	Sables et graves gréseux	Racines et bois	PID: 0,0 ppmV
P15	0-0,9 m	Sables et limons	-	PID: 0,0 ppmV

Figure 23 : Localisation des investigations, mesures de terrain et indices de pollution relevés

5.3 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de GINGER BURGEAP a procédé au prélèvement des échantillons de sols les plus représentatifs selon le protocole détaillé ci-après :

- un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1 m ;
- un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 500 ml.

Les échantillons soumis à analyses en laboratoire ont été choisis en fonction des observations de terrain et/ou de leur proximité d'une installation potentiellement polluante ayant pu avoir un impact sur les milieux étudiés et/ou du projet d'aménagement.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire ou au réfrigérateur dans les locaux de GINGER BURGEAP.

5.5 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propres à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry). Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.
НАР	En l'absence de données locales, les valeurs de référence qui seront utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et de celles des fiches toxicologiques de l'INERIS pour des sols urbains ou agricoles.
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.
Gestion des déblais	Les concentrations sur le sol brut et sur l'éluât ont été comparées aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes.

Notons que si une réutilisation des terres est effectivement envisagée, les caractéristiques géotechniques des terrains à réutiliser devront être évaluées par le maitre d'ouvrage et l'ensemble des recommandations des guides cités ci-dessus devra être pris en compte.

5.6 Résultats et interprétation des analyses sur les sols

Les résultats d'analyses sont synthétisés dans les Tableau 11 et Tableau 12.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 5.

Tableau 11 : Résultats d'analyses sur les sols bruts

								,							
				Campagne	Campagne du 03/08/2022										
				Localisation	Plateforme A	Plateforme D	Plateforme D	Plateforme A	Plateforme A	Zone F/F	Zone F/F	Zone tampon	Zone tampon	Plateforme C	Plateforme C
				Echantillon	P1	P3	P3	P13	P12	P15	P14	P7	P7	P4	P4
				Profondeur (m)	0-1	0-1	1-2	0-1	0-1	0-0.9	0-0.7	0-1	1-2	0-1	1-1.4
Valeur PID (ppmV)			0,0	0,3	0,5	0,0	0,2	0,0	0,0	0,2	0,9	1,0	0,5		
		Indice organoleptique			Bois	-	Déchets (bois,	Morceau de tuiles	-	-	Bois	Plastique, odeur	Matière organique	Bois, enrobés,	-
		Lithologie					plastique, pneu)					M.O.		plastiques	
		Bruit de fond (1)	Valeurs limite des ISDI	Valeurs limites des ISDI + (ISDI aménagées) (2)	Remblais + limons et graves bruns-ocre	Remblais limons sableux avec galets	Limons argileux	Remblais limons sablo-graveleux	Remblais limons graveleux	Sables et limons brun-ocre	Sables et graves gréseuses	Remblais limono- sableux avec blocs et graves	Argiles limoneuses	Remblais argilo- limoneuses avec galets et blocs	Limons sableux
ANALYSES SUR SOL BRUT															
Matière sèche	%	-	-	-	91.6	90.8	85.5	92.2	94.3	93.6	95.9	87.9	88.7	89.3	93.1
COT Carbone Organique Total (3)	mg/kg M.S.	-	30 000	60 000	9 900	13 000	20 000	9 400	8 200	8 100	7 000	6 900	8 700	9 900	8 000
Métaux et métalloïdes															
Antimoine (Sb) Arsenic (As)	mg/kg M.S. mg/kg M.S.	1.5 25	1		0.7 17	<0,5 7.3	0.8 30	0.9	0.8 15	0.6 12	<0,5 11	1.2 13	<0,5 5.7	<0,5 15	0.6 34
Baryum (Ba)	mg/kg M.S.	3000	Résultats de	Résultats de	83	65	110	110	79	55	59	110	64	47	52
Cadmium (Cd)	mg/kg M.S.	0.45	lixiviation	lixiviation	<0,1	<0,1	0.1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr)	mg/kg M.S.	90	conformes aux	conformes aux	19	16	16	30	19	11	16	27	23	23	18
Cuivre (Cu)	mg/kg M.S.	20	seuils définis	seuils définis	14	19	22	21	11	7.9	9.9	13	16	10	10
Mercure (Hg)	mg/kg M.S.	0.1	pour les déchets inertes dans	pour les déchets inertes dans	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molybdène (Mo) Nickel (Ni)	mg/kg M.S. mg/kg M.S.	- 60	l'arrêté du	l'arrêté du	<1,0 14	<1,0 14	<1,0 11	<1,0 22	<1,0 13	<1,0 9.4	<1,0 13	<1,0 20	<1,0 22	<1,0 16	<1,0 13
Plomb (Pb)	mg/kg M.S.	50	12/12/2014	12/12/2014	24	12	30	30	20	16	23	31	14	18	22
Sélénium (Se)	mg/kg M.S.	0.7	1		<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Zinc (Zn)	mg/kg M.S.	100			76	46	100	100	78	56	66	79	49	47	52
Somme des hydrocarbures C5-C10	mg/kg M.S.	LQ	-	-	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Indice hydrocarbure C10-C40															
Fraction > C10 - C12 inclus Fraction > C12 - C16 inclus	mg/kg M.S. mg/kg M.S.	LQ LQ	-	-	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0	<4,0 <4.0
Fraction > C12 - C16 inclus Fraction > C16 - C20 inclus	mg/kg M.S.	LQ	-	-	<4,0	<4,0 <2,0	<4,0 3.9	<4,0	<4,0	<4,0	<4,0	<4,U 4.7	<4,0	<4,0	<4,0 <2.0
Fraction > C20 - C24 inclus	mg/kg M.S.	LQ	-	-	<2,0	<2,0	7.3	<2,0	<2,0	<2,0	<2,0	5.7	<2,0	<2,0	<2,0
Fraction > C24 - C28 inclus	mg/kg M.S.	LQ	-	-	2.7	3.7	13.6	2.6	3	<2,0	2.8	8	4.3	<2,0	<2,0
Fraction > C28 - C32 inclus	mg/kg M.S.	LQ	-	-	4.7	5	19	4.2	5.4	3.4	3.4	9.1	5	<2,0	3
Fraction > C32 - C36 inclus Fraction > C36 - C40 exclus	mg/kg M.S. mg/kg M.S.	LQ LQ	-	-	2.5 <2.0	4.2 <2.0	21.3 12.4	2.6 <2.0	3.7 <2,0	2.4 <2.0	<2,0 <2,0	6.6 3.6	2.7 <2,0	<2,0 <2,0	<2,0 <2.0
Somme des hydrocarbures C10-C40	mg/kg M.S.	LQ	500	500	<20,0	<20,0	80.8	<20.0	<20,0	<20,0	<20,0	40.8	<20,0	<20.0	<20,0
HAP							00.0					1000			
Naphtalène	mg/kg M.S.	0.125	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène Fluorène	mg/kg M.S. mg/kg M.S.	-	-	-	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050
Phénanthrène	mg/kg M.S.	-	-	-	<0.050	<0.050	0.064	<0.050	<0.050	0.21	<0.050	0.55	<0.050	<0.050	<0.050
Anthracène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0.1	<0,050	<0,050	<0,050
Fluoranthène	mg/kg M.S.	-	-	-	0.063	<0,050	0.19	<0,050	<0,050	0.28	<0,050	0.63	<0,050	<0,050	<0,050
Pyrène Renze (a) anthrasène	mg/kg M.S.	-	-	-	<0,050	<0,050	0.18	<0,050	<0,050	0.27	<0,050	0.53	<0,050	<0,050	<0,050
Benzo(a)anthracène Chrysène	mg/kg M.S. mg/kg M.S.	-	-	-	<0,050 <0.050	<0,050 <0.050	0.084	<0,050 <0.050	<0,050 <0.050	0.12 0.18	<0,050 <0.050	0.25 0.27	<0,050 <0.050	<0,050 <0.050	<0,050 <0.050
Benzo(b)fluoranthène	mg/kg M.S.	-	-	-	<0,050	<0,050	0.091	<0,050	<0,050	0.12	<0,050	0.28	<0,050	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	0.13	<0,050	<0,050	<0,050
Benzo(a)pyrène	mg/kg M.S.	-	-	-	<0,050	<0,050	0.18	<0,050	<0,050	0.16	<0,050	0.3	<0,050	<0,050	<0,050
Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg M.S. mg/kg M.S.	-	-	-	<0,050 <0,050	<0,050 <0,050	<0,050 0.11	<0,050 <0,050	<0,050 <0,050	<0,050 0.093	<0,050 <0,050	<0,050 0.17	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050
Indéno(1,2,3-cd)pyrène	mg/kg M.S.	-	-	-	<0,050	<0,050	0.11	<0,050	<0,050	0.093	<0,050	0.17	<0,050	<0,050	<0,050
Somme des HAP	mg/kg M.S.	25	50	50	0.063	n.d.	1.209	n.d.	n.d.	1.543	n.d.	3.43	n.d.	n.d.	n.d.
PCB															
PCB (28)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101) PCB (118)	mg/kg M.S. mg/kg M.S.	LQ LQ	-	-	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001
PCB (118)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (153)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (180)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
Somme des PCB	mg/kg M.S.	LQ	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
PCB de types dioxines		10			.0.004	.0.004	.0.004	-0.004	.0.004	.0.004	.0.004	.0.004	.0.004	.0.004	.0.004
PCB (118) Paramètres physico-chimiques	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
pH	-	-	-	-	8.5	8.6	8.6	8.7	8.7	7.9	8.4	8.7	8.6	8.7	8.6
It			1	1	. 0.0	3.0	1 3.0	J.,	J., J.,		. 5	J.,	. 3.0	. 5.1	

LQ : Limite de quantification du laboratoire / n.d. : Non détecté

Concentration supérieure au bruit de fond et inférieure aux valeurs limites des ISDI

Concentration supérieure aux valeurs limites des ISDI et inférieure aux valeurs limites des ISDI+

Concentration supérieure aux valeurs limites des ISDI+ et inférieure aux valeurs limites des ISDND

Concentration supérieure aux valeurs limites des ISDND et inférieure aux valeurs limites de bio-traitement ncentration supérieure aux valeurs limites de bio-traitement et inférieure aux valeurs limites des ISDD

entration supérieure aux valeurs limites des ISDI, des ISDI+, des ISDND, de bio-traitement, des ISDD

Réf: CSSPSE222204 / RSSPSE14021-01 AVI-FLD / CH / GRE 25/08/2022 Page 36/48

⁽¹⁾ Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

(2) Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

(3) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽⁴⁾ Valeur limite des ISDI: valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽⁵⁾ Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

DUNGLAI													5. I
				Campagne									
				Localisation	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B
				Echantillon	P11	P2	P10	P5	P9	P9	P6	P8	P8
				Profondeur (m)	0-0.8	0-1	0-0.8	0.4-1.1	0-1	1-2	0-1	0-1	1-2
			V	aleur PID (ppmV)	0,5	0,2	0,6	0,0	0,0	0,0	0,3	0,3	0,0
			Indic	e organoleptique		Ferailles, câbles en acier	-	-	Traces noires	-	-	-	Bois noirs
				Lithologie									
		Bruit de fond (1)	Valeurs limite des ISDI		Remblais avec grés et sables brun-ocre	Remblais limono- graveleux	Limons et grave brun ocre	Argiles limoneuses	Argiles limoneuses et blocs	Argiles beige orangées	Limons sableux beige	Remblais limono- argileux avec galets et blocs	Limons sableux brun
ANALYSES SUR SOL BRUT													
Matière sèche	%	-	-	-	96	96	94.6	93.3	79.9	77	88.8	88.8	87.5
СОТ													
COT Carbone Organique Total (3)	mg/kg M.S.	-	30 000	60 000	12 000	19 000	7 100	7 900	35 000	15 000	5 700	11 000	8 600
Métaux et métalloïdes	ma/ka M C	15			1	0.9	0.6	<0.5	<0.5	<0,5	<0,5	<0,5	0.5
Antimoine (Sb) Arsenic (As)	mg/kg M.S. mg/kg M.S.	1.5 25			1 12	16	10	<0,5 9.1	<0,5 13	<0,5 10	<0,5 9.1	<0,5 10	0.5
Baryum (Ba)	mg/kg M.S.	3000	Résultats de	Résultats de	25	91	44	38	47	36	36	66	52
Cadmium (Cd)	mg/kg M.S.	0.45	lixiviation	lixiviation	<0,1	0.4	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Chrome (Cr)	mg/kg M.S.	90	conformes aux	conformes aux	4.1	15	12	15	14	11	12	17	20
Cuivre (Cu)	mg/kg M.S.	20	seuils définis	seuils définis	4.3	22	14	7.1	9.3	7.6	8.6	17	22
Mercure (Hg)	mg/kg M.S.	0.1	pour les déchets	pour les déchets	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molybdène (Mo)	mg/kg M.S.	-	inertes dans	inertes dans	<1,0	<1,0	<1,0	<1,0	<1,0	1	<1,0	<1,0	<1,0
Nickel (Ni)	mg/kg M.S.	60	l'arrêté du 12/12/2014	l'arrêté du 12/12/2014	3.7	11	7.2	9.9	9.3	7.2	7.7	10	12
Plomb (Pb) Sélénium (Se)	mg/kg M.S.	50	12/12/2014	12/12/2014	20	34	22	21	15	18	12	29	29
Zinc (Zn)	mg/kg M.S. mg/kg M.S.	0.7 100			<1,0 57	<1,0 120	<1,0 57	<1,0 46	<1,0 45	<1,0 37	<1,0 35	<1,0 51	<1,0 74
Somme des hydrocarbures C5-C10	mg/kg M.S.	LQ	-	-	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1,0	<1.0
Indice hydrocarbure C10-C40	mg/kg ivi.s.	LQ	-	-	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
Fraction > C10 - C12 inclus	mg/kg M.S.	LQ	-	-	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Fraction > C12 - C16 inclus	mg/kg M.S.	LQ	-	-	<4.0	<4.0	<4,0	<4.0	<4.0	9.5	<4,0	<4.0	<4,0
Fraction > C16 - C20 inclus	mg/kg M.S.	LQ	-	-	<2,0	<2,0	<2,0	3.2	11.3	17	3.6	<2,0	<2,0
Fraction > C20 - C24 inclus	mg/kg M.S.	LQ	-	-	<2,0	2.3	<2,0	3.2	27.4	33.4	7	<2,0	<2,0
Fraction > C24 - C28 inclus	mg/kg M.S.	LQ	-	-	<2,0	4.8	<2,0	4.6	97.9	110	24.4	8.3	<2,0
Fraction > C28 - C32 inclus	mg/kg M.S.	LQ	-	-	<2,0	6.4	<2,0	4.9	69	74	18	8.4	<2,0
Fraction > C32 - C36 inclus Fraction > C36 - C40 exclus	mg/kg M.S.	LQ LQ	-	-	<2,0	3.9 <2.0	<2,0 <2.0	3.3	29.3 7.6	25.3 5.2	7.7	4.3 <2.0	<2,0 <2.0
Somme des hydrocarbures C10-C40	mg/kg M.S. mg/kg M.S.	LQ	500	500	<2,0 <20,0	<2,0 23.2	<20,0	<2,0 23.8	250	290	<2,0 65.1	<2,0 26.4	<2,0
HAP	mg/kg W.O.	LQ	300	300	20,0	20.2	₹20,0	23.0	250	230	03.1	20.4	₹20,0
Naphtalène	mg/kg M.S.	0.125	-	-	0.089	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050
Acénaphtylène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	0.11	<0,050	<0,050	<0,050
Fluorène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	0.13	<0,050	<0,050	<0,050
Phénanthrène	mg/kg M.S.	-	-	-	<0,050	0.065	<0,050	<0,050	0.38	1.6	0.18	<0,050	<0,050
Anthracène	mg/kg M.S.	-	-	-	<0,050 <0.050	<0,050 0.14	<0,050 <0.050	<0,050 <0.050	0.35 0.71	1.1 1.8	0.098	<0,050 <0.050	<0,050 <0.050
Fluoranthène Pyrène	mg/kg M.S. mg/kg M.S.	-	-	-	<0,050 <0.050	0.14	<0,050 <0.050	<0,050	0.71	1.8	0.28	<0,050	<0,050 <0.050
Benzo(a)anthracène	mg/kg M.S.	-	-	-	<0.050	0.061	<0,050	<0.050	0.31	0.68	0.21	<0,050	<0,050
Chrysène	mg/kg M.S.	-	-	-	<0,050	0.072	<0,050	<0,050	0.38	0.77	0.14	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg M.S.	-	-	-	<0,050	0.086	<0,050	<0,050	0.25	0.75	0.12	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	0.14	0.3	<0,050	<0,050	<0,050
Benzo(a)pyrène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	0.29	0.69	0.14	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg M.S.	-	-	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg M.S. mg/kg M.S.	-	-	-	<0,050 <0,050	<0,050 0.066	<0,050 <0,050	<0,050 <0,050	0.18 0.18	0.48 0.38	0.098 0.11	<0,050 <0,050	<0,050 <0,050
Somme des HAP	mg/kg M.S.		50	50	0.089	0.63	n.d.	n.d.	3.75	10.19	1.526	n.d.	n.d.
PCB	mg/kg mic.	20	00	00	0.000	0.00	11101	11101	5.1 0	10.10	11020	11.01	11.01
PCB (28)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0.003	<0,001
PCB (118)	mg/kg M.S.	LQ	-	-	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0.002	<0,001
PCB (138)	mg/kg M.S.	LQ	-	-	<0,001	0.003	<0,001	<0,001	<0,001	<0,001	<0,001	0.002	<0,001
PCB (153)	mg/kg M.S.	LQ	-	-	<0,001	0.003 0.003	<0,001 <0,001	<0,001	<0,001 <0,001	<0,001	<0,001	0.002	<0,001
PCB (180) Somme des PCB	mg/kg M.S. mg/kg M.S.	LQ LQ	- 1	1	<0,001 n.d.	0.003	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 n.d.	<0,001 0.009	<0,001 n.d.
PCB de types dioxines	mg/kg w.S.	LQ	'		n.u.	0.003	n.u.	n.u.	II.u.	n.u.	n.u.	0.003	n.u.
PCB (118)	mg/kg M.S.	LQ	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0,001
Paramètres physico-chimiques	33				1,722	1/	1,722	1,722	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,		.,
pH	-	-	-	-	7.9	8.5	7.6	8.1	10.3	10.5	8.8	8.5	8.4
						-				-	-		

Concentration supérieure au bruit de fond et inférieure aux valeurs limites des ISDI

Concentration supérieure aux valeurs limites des ISDI et inférieure aux valeurs limites des ISDI+ Concentration supérieure aux valeurs limites des ISDI+ et inférieure aux valeurs limites des ISDND

oncentration supérieure aux valeurs limites des ISDND et inférieure aux valeurs limites de bio-traiter

entration supérieure aux valeurs limites de bio-traitement et inférieure aux valeurs limites des ISDD

LQ: Limite de quantification du laboratoire / n.d.: Non détecté

(1) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽²⁾ Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage
(3) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽⁴⁾ Valeur limite des ISDI : valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽⁵⁾ Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Tableau 12 : Résultats d'analyses sur éluats

				Campagne	Campagne du										
				Gumpagne	03/08/2022										
				Localisation	Plateforme A	Plateforme D	Plateforme D	Plateforme A	Plateforme A	Zone F/F	Zone F/F	Zone tampon	Zone tampon	Plateforme C	Plateforme C
				Echantillon	P1	P3	P3	P13	P12	P15	P14	P7	P7	P4	P4
				Profondeur (m)	0-1	0-1	1-2	0-1	0-1	0-0.9	0-0.7	0-1	1-2	0-1	1-1.4
			V	aleur PID (ppmV)	0,0	0,3	0,5	0,0	0,2	0,0	0,0	0,2	0,9	1.0	0,5
			Indice organoleptique		Bois	-	Déchets (bois, plastique, pneu)	Morceau de tuiles	-	-	Bois	Plastique, odeur M.O.	Matière organique	Bois, enrobés, plastiques	-
				Lithologie											
		Bruit de fond (1)			Remblais + limons et	Remblais limons sableux avec galets	Limons argileux	Remblais limons sablo-graveleux	Remblais limons graveleux	Sables et limons brun-ocre	Sables et graves gréseuses	Remblais limono- sableux avec blocs et graves	Argiles limoneuses	Remblais argilo- limoneuses avec galets et blocs	Limons sableux
ANALYSES SUR ELUAT															
Paramètres généraux															
pH	-	-	-	-	8.4	8.3	8.3	8.4	8.3	8	8.3	8.8	8.3	8.2	8.2
Conductivité corrigée à 25 °C	μS/cm	-	-	-	160	130	160	120	120	63.7	110	140	150	86.8	96.2
Fraction soluble (5)	mg/kg M.S.	-	4000	12000	1400	1000	1000	1000	1400	<1000	<1000	1100	<1000	<1000	<1000
Carbone organique total	mg/kg M.S.	-	500	500	44	43	66	34	31	27	27	15	25	25	26
Indice phénol	mg/kg M.S.	-	1	3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Anions															
Fluorures	mg/kg M.S.	-	10	30	8	6	9	17	8	5	6	12	8	11	11
Chlorures (5)	mg/kg M.S.	-	800	2400	22	10	18	13	29	17	12	10	26	18	11
Sulfates (5)	mg/kg M.S.	-	1000	3000	190	100	110	77	140	<50	<50	270	130	62	<50
Métaux et métalloïdes															
Antimoine	mg/kg M.S.	-	0.06	0.18	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic	mg/kg M.S.	-	0.5	1.5	< 0.05	< 0.05	0.07	0.11	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	0.07
Baryum	mg/kg M.S.	-	20	60	0.18	< 0.1	0.24	< 0.1	0.1	< 0.1	< 0.1	< 0.1	0.22	< 0.1	< 0.1
Cadmium	mg/kg M.S.	-	0.04	0.12	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chrome	mg/kg M.S.	-	0.5	1.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cuivre	mg/kg M.S.	-	2	6	0.11	0.1	0.18	0.12	0.07	0.04	0.04	0.03	0.05	0.11	0.09
Mercure	mg/kg M.S.	-	0.01	0.03	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Molybdène	mg/kg M.S.	-	0.5	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05
Nickel	mg/kg M.S.	-	0.4	1.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Plomb	mg/kg M.S.	-	0.5	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Selenium	mg/kg M.S.	-	0.1	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc	mg/kg M.S.	-	4	12	< 0.02	0.05	0.02	< 0.02	< 0.02	0.04	0.03	< 0.02	< 0.02	0.05	< 0.02

(5) Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Concentration supérieure au bruit de fond et inférieure aux valeurs limites des ISDI

Concentration supérieure aux valeurs limites des ISDI et inférieure aux valeurs limites des ISDI+

Concentration supérieure aux valeurs limites des ISDI+ et inférieure aux valeurs limites des ISDND

Concentration supérieure aux valeurs limites des ISDND et inférieure aux valeurs limites de bio-traitement Concentration supérieure aux valeurs limites de bio-traitement et inférieure aux valeurs limites des ISDD

Réf: CSSPSE222204 / RSSPSE14021-01 AVI-FLD / CH / GRE 25/08/2022 Page 38/48

LQ: Limite de quantification du laboratoire / n.d.: Non détecté

(1) Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽²⁾ Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage
(3) [Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽⁴⁾ Valeur limite des ISDI : valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

5. Investigations sur les sols (A200)

Parametries généraux														
Proceduct with Price Proceduct with Price Price Proceduct with Price P					Campagne									
Protoned prof. Prot					Localisation	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B	Plateforme B
Valeur PID (ppmV) 0.5 0.2 0.6 0.0 0.0 0.0 0.3 0.3 0.0					Echantillon	P11	P2	P10	P5	P9	P9	P6	P8	P8
Indice organoleptique Feralles, cibbes on action Traces notines Tr					Profondeur (m)	0-0.8	0-1	0-0.8	0.4-1.1	0-1	1-2	0-1	0-1	1-2
Indice organoleptique Feralles, cibbes on action Traces notines Tr				V	aleur PID (nnmV)	0.5	0.2	0.6	0.0	0.0	0.0	0.3	0.3	0.0
September Sept				•	aloui i ib (ppiiii)	0,0	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bruik de fond (1) Valeurs limite des ISDI Class of the SDI Cla				Indic	e organoleptique	-	· '	-	-	Traces noires	-	-	-	Bois noirs
Bruit de Fond (1) Valeurs limite des ISDI (SISDI					Lithologie									
Parametries généraux				doc ISDI	des ISDI + (ISDI	Remblais avec grés et sables brun-ocre	Remblais limono- graveleux	Limons et grave brun ocre	Argiles limoneuses	Argiles limoneuses et blocs			argileux avec galets	Limons sableux brun
PH	ANALYSES SUR ELUAT													
Script S	Paramètres généraux													
Fraction Soluble (5)	pH		-	-	-									
Carbone organique total mg/kg M.S. - 500 500 35 33 23 36 11 14 12 24 18 Indice phénol mg/kg M.S. - 1 3 3 3 3 3 3 3 3 3			-											
Indice phénol mg/kg M.S. - 1 3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0			-											
Anions Pluorures mg/kg M.S. - 10 30 3 8 7 6 4 4 5 9 11 Chlorures (5) mg/kg M.S. - 800 2400 11 9 14 47 720 710 250 120 30 Suffates (5) mg/kg M.S. - 1000 3000 77 <50 <50 2400 790 1500 400 140 53 Midtaux et métaloïdes Antimoine mg/kg M.S. - 0.06 0.18 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			-	500										
Flouries mg/kg M.S. - 10 30 3 8 7 6 4 4 5 9 11 Chlorups (5) mg/kg M.S. - 800 2400 11 9 14 47 720 770 250 120 30 MStates (5) mg/kg M.S. - 1000 3000 77 <50 <50 2400 790 1500 400 140 53 MStates (5) mg/kg M.S. - 0.06 0.18 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Indice phénol	mg/kg M.S.	-	1	3	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chlorures (5) mg/kg M.S. 800 2400 11 9 14 47 720 710 250 120 30	Anions													
Sulfates (5) mg/kg M.S 1000 3000 77 <50 <50 2400 790 1500 400 140 53 Metaux et métalloïdes Mathimoine	Fluorures		-					'					J	
Métaux et métalloïdes mg/kg M.S. - 0.06 0.18 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.001 <0.001 <0.001 <0.0	(-)		-											
Antimoine mg/kg M.S 0.06 0.18 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.		mg/kg M.S.	-	1000	3000	77	<50	<50	2400	790	1500	400	140	53
Arsenic mg/kg M.S 0.5 1.5 < 0.05 0.06 < 0.05 < 0.05 0.06 0.06 0.06 0.1 < 0.05 < 0.05														
Baryum	Antimoine		-											
Cadmium mg/kg M.S. - 0.04 0.12 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.03 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	Arsenic		-											
Chrome mg/kg M.S. - 0.5 1.5 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 < 0.03 < 0.03 < 0.05 < 0.05 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.005 < 0.05 < 0.05 < 0.05 < 0.05	Baryum		-											
Cuivre mg/kg M.S. - 2 6 0.03 0.1 0.08 0.03 0.04 0.03 0.07 0.05 Mercure mg/kg M.S. - 0.01 0.03 <0.0003			-											
Mercure mg/kg M.S. - 0.01 0.03 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.005 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Chrome		-		1.5									
Molybadène mg/kg M.S. - 0.5 1.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td>Cuivre</td> <td></td> <td>-</td> <td>_</td> <td></td>	Cuivre		-	_										
Nickel mg/kg M.S 0.4 1.2 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0	Mercure		-											
Plomb mg/kg M.S. - 0.5 1.5 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	Molybdène		-											
Selenium mg/kg M.S. - 0.1 0.3 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	Nickel		-											
Zinc mg/kg M.S 4 12 <0.02 0.03 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Plomb		-											
			-											
10. Limite de grantification du laboratoire /n d. Non détacté	Zinc		-	4	12	< 0.02	0.03	0.03	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02

LQ : Limite de quantification du laboratoire / n.d. : Non détecté

Concentration supérieure au bruit de fond et inférieure aux valeurs limites des ISDI

Concentration supérieure aux valeurs limites des ISDI et inférieure aux valeurs limites des ISDI+

Concentration supérieure aux valeurs limites des ISDI+ et inférieure aux valeurs limites des ISDND

Concentration supérieure aux valeurs limites des ISDND et inférieure aux valeurs limites de bio-traitement

Concentration supérieure aux valeurs limites de bio-traitement et inférieure aux valeurs limites des ISDD Concentration supérieure aux valeurs limites des ISDI, des ISDI+, des ISDND, de bio-traitement, des ISDD

⁽¹⁾ Valeurs en gras : source = Teneurs totales en éléments traces métalliques dans les sols, Denis BAIZE, INRA. En italique : source = ATSDR

⁽²⁾ Valeurs limites indicatives issues des textes européens, des arrêtés ministériel et des critères communément appliqués par les centres de stockage

^{(3) [}Pour l'acceptation en ISDI], une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le carbone organique total sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽⁴⁾ Valeur limite des ISDI: valeur non réglementaire mais parfois appliquée par les gestionnaires d'ISDI

⁽⁵⁾ Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission [en ISDI] s'il respecte soit les valeurs associées au chlorure et au sulfate, soit celle associée à la fraction soluble.

Sur sol brut

Métaux et métalloïdes

- Teneurs supérieures au bruit de fond géochimique (BdF) pour le Cuivre au droit des fouilles P2 pour l'horizon de 0-1m, P3 pour l'horizon de 1-2m, P8 pour l'horizon de 1-2m et P13 pour l'horizon 0-1m. Ces concentrations restent au voisinage de la BdF avec des teneurs respectives de 21 et 22 mg/kg pour une valeur BdF de 20 mg/kg.
- Teneurs supérieures au BdF pour l'Arsenic au droit des fouilles P3 pour l'horizon de 1-2 m et P4 pour l'horizon de 1-1,4m. Ces concentrations restent au voisinage de la BdF avec des teneurs respectives de 30 et 34 mg/kg pour une valeur BdF de 25 mg/kg.
- Teneur supérieure au BdF pour le Zinc au droit de la fouille P2 pour l'horizon 0-1 m. Toutefois, cette concentration reste au voisinage de la BdF avec une teneur de 150 mg/kg pour une valeur BdF de 100 mg/kg.
- Aucun dépassement des valeurs seuils de comparaison pour les autres métaux et métalloïdes.

Composés organiques

- Teneur en Carbone Organique Total (COT) supérieure à la valeur limite d'acceptation en ISDI (30000 mg/kg) pour la fouille P9 pour l'horizon 0-1m avec une valeur de 35000 mg/kg.
- Traces en hydrocarbures C10-C40 (fraction lourde) au droit de l'ensemble des investigations à l'exception des fouilles P4 pour l'horizon 0-1m, p8 pour l'horizon (1-2m), P10 pour l'horizon 0-0,8m et P11 pour l'horizon 0-0,8m. Ces teneurs restent inférieures à 100 mg/kg à l'exception de la fouille P9 avec des teneurs entre 250 et 290 mg/kg (0-2 m). Les composés majoritaires correspondent aux fractions C24-C32, fractions lourdes et peu mobiles.
- Traces en HAP au droit des fouilles P1, P2, P6, P7 et P9 pour les horizons 0-1m, P3 et P9 pour les horizons 1-2m et P11 et P15 pour les horizons 0-0,8m avec des teneurs respectives inférieures à 4 mg/kg sauf pour l'horizon 1-2m de la fouille P9 avec une valeur de 10,19 mg/kg. Ces teneurs restent inférieures au BdF (25 mg/kg) et ne représentent donc pas un impact significatif.
- Traces en PCB au droit des fouilles P2 et P8 pour les horizons 0-1m avec des teneurs de 0,009 mg/kg dont 0,002 mg/kg de PCB de type dioxine pour la fouille P8.
- Absence de détection en hydrocarbures C5-C10 (fraction volatile), COHV et naphtalène.

Sur éluât

- Teneurs en fraction soluble supérieures à la valeur limite d'acceptation en ISDI (4 000 mg/kg) pour les fouilles P5 pour l'horizon 0,4-1,1m et P9 pour l'horizon 1-2m avec des teneurs respectives de 5 300 et 4 600 mg/kg.
- Teneurs en Fluorure supérieures à la valeur limite d'acceptation en ISDI (10 mg/kg) pour les fouilles P4 pour l'horizon 0-1,4m, P7 et P13 pour les horizons 0-1m et p8 pour l'horizon 1-2m avec des teneurs entre 11 et 17 mg/kg.
- Teneurs en Sulfate supérieures à la valeur limite d'acceptation en ISDI (1 000 mg/kg) pour les fouilles P5 pour l'horizon 0,4-1,1m et P9 pour l'horizon 0-1m avec des teneurs respectives de 1 500 et 2 400 mg/kg.
- Quelques traces en baryum, cuivre, zinc, arsenic, cadmium, molybdène, et chrome sur éluat ont été détectées sur l'ensemble du site. Ces concentrations de dépassent pas les valeurs limites d'acceptation en ISDI.

Zones de pollutions concentrées identifiées

- A l'exception des concentrations en fluorure, les impacts identifiés semblent se concentrer au niveau de la plateforme
 B où des dépôts de remblais ont été identifiés et plus particulièrement au droit de la fouille P9. Vis-à-vis du scénario
 1 d'implantation du futur projet du COPIL de mai 2022, cette zone identifiée se trouve au droit du futur groupe scolaire Paul Raoux et de la salle de restauration.
- Des déchets (bois, plastiques, ferrailles, pneus,..) sont identifiés au droit de plusieurs sondages (P2, P3, P4, P7, P9, P13).

Gestion des déblais hors site

Zones de pollutions concentrées identifiées

- Lors des terrassements, les déchets (bois, plastiques, pneus, ...) devront être triés et évacués vers des filières de traitement adaptés
- Les matériaux ne sont pas inertes au regard de l'arrêté du 12/12/2014 en ce qui concerne les fouilles P4, P5, P7, P8, P9 et P13.
- En cas d'évacuation hors site des matériaux excavés, sur la base des critères d'acceptation des filières de traitement et de leurs caractéristiques physico-chimiques, les filières d'élimination identifiées envisageables sont les suivantes :

 \square ISDI \boxtimes ISDI+ \square ISDND

La cartographie des principales anomalies est présentée en Figure 24.



Figure 24 : Cartographie des anomalies dans les sols

6. Synthèse des impacts et schéma conceptuel

6.1 Synthèse des impacts dans les différents milieux

Les investigations réalisées ont mis en évidence la présence d'impacts au niveau de la plateforme B de la zone d'étude et donc au droit des remblais identifiés.

Tableau 13 : Synthèse des impacts mis en évidence

Sources potentielles de pollution caractérisées	Impacts identifiés dans les sols	Impacts identifiés dans les eaux souterraines et gaz des sols	Cohérence source- impact	Cohérence entre les différents milieux	Recommandations
Au droit des remblais	Concentration en hydrocarbures C10-C40 au droit de P9 Teneurs: 250 mg/kg (0-1 m) 290 mg/kg (1-2 m) Concentration en HAP au droit de P9. Teneurs: 3,75 mg/kg (0-1 m) 10,19 mg/kg (1-2 m) Concentration en surface (0-1m) dans les sols en PCB au droit de P2 et P8. Teneurs de 0,009 mg/kg.	Non caractérisé	Oui	-	Délimitation de la zone concentrée.

6.2 Schéma conceptuel

Sur la base des résultats des investigations, le schéma conceptuel pour les usages futurs et intégrant les caractéristiques du projet comme rappelé ci-dessous, peut être établi (cf. Tableau 13 et Figure 25).

Projet d'aménagement/usage pris en compte/environnement du site A la demande de la ville de Fréjus, notre étude se base sur le scénario 1 de la présentation du projet par le COPIL en date du 19/05/2022. Ce scénario prévoit :

- la conservation de l'Espace Boisé Classé (EBC) présent à l'ouest du site ;
- la conservation du front de taille archéologique identifié à l'est du site ;
- la création d'une zone tampon de protection acoustique et contre l'empoussièrement en bordure nord et est du site au vu de la présence à proximité des activités de carrière et de l'autoroute A8;
- la construction des locaux des écoles Paul Roux et du Caïs, comprenant des espaces pédagogiques et récréatifs (cours de récréation, préaux)
- la mise en réserve d'un espace dédié aux futurs agrandissements de l'école (capacité de 3 classes supplémentaires à proximité des installations projetées;
- la construction d'une bibliothèque ;
- la construction d'une salle polyvalente ;
- la construction d'une salle de restauration ;
- la création d'un jardin pédagogique ;
- l'aménagement d'espaces verts ;
- l'aménagement de voiries et parkings de surface.

Les impacts identifiés sont situés :

- au droit du futur groupe scolaire Paul Raoux (traces de PCB au niveau du sondage P2 sur la tranche 0 à 1 m);
- au droit de la future salle de restauration (traces de PCB au niveau du sondage P8 sur la tranche 0 à 1 m et présence d'hydrocarbures au niveau du sondage P9 sur la tranche 0 à 2 m)

Ils sont considérés dans l'emprise des terrassements nécessaires pour réaliser les futurs bâtiments.

Les terres impactées au droit de P2, P8 et P9 sont donc considérées comme évacuées du site au cours des travaux de construction. Avec cette hypothèse, aucune voie de transfert n'est retenue dans le cadre du futur projet d'aménagement.

En effet, aucun envol de poussière ou volatilisation n'est considéré du fait de l'absence de composés volatils dans les sols et de la présence de futur bâti au droit des terrains impactés.

Le transfert des polluants aux eaux souterraines n'est également considéré du fait de la profondeur de la nappe et du caractère imperméable des terrains sus-jacents.

A noter que l'impact en P9 a été retrouvé jusqu'à la limite des investigations, soit 2 m de profondeur. Il conviendra de vérifier l'absence de pollution résiduelle en fond de fouille au droit de P9 à l'issue des travaux de terrassement.

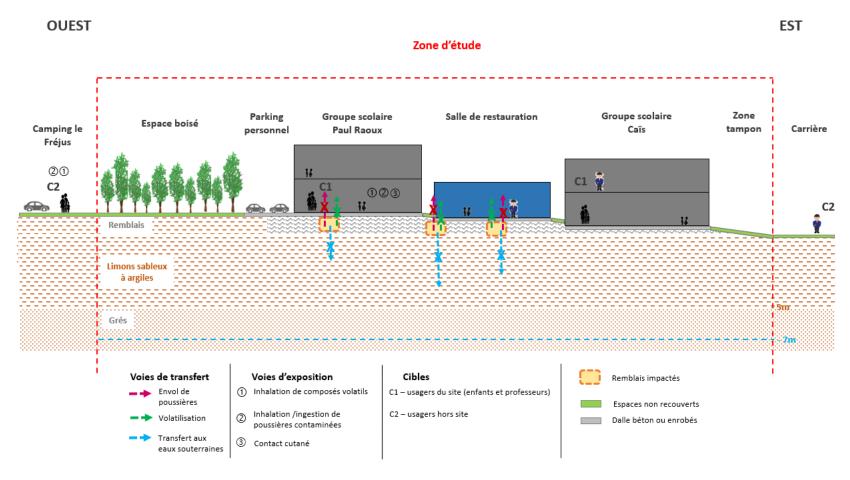


Figure 25 : Schéma conceptuel (usage futur)

7. Mesures simples de gestion

7.1 Gestion des pollutions et risques sanitaires

Au regard des données disponibles, l'état du site apparait compatible avec les usages projetés sous réserve de la mise en œuvre des mesures de gestion simples suivantes :

 recouvrement pérenne des terres en place sur l'ensemble du site par un revêtement ou une couche de matériaux sains de 30 cm d'épaisseur minimum après tassement au droit des espaces non recouverts afin d'éviter tout contact direct avec les futurs usagers.

7.2 Gestion des terres excavées

7.2.1 Réemploi sur site

D'après la réglementation française, les terres excavées prennent un statut de déchets dès lors qu'elles sont évacuées d'un site (site étant entendu comme parcelle ou groupement de parcelles objet d'une même unité foncière, d'un même permis d'aménager ou de construire). Ainsi, la gestion des terres excavées sera réalisée conformément à la législation applicable aux déchets.

Dans une logique de réduction des déchets à la source, il est recommandé de limiter le volume de matériaux évacués hors site et de favoriser autant que possible le réemploi des terres excavées sur site. Cette recommandation vaut en particulier pour les matériaux identifiés comme non inertes, pour lesquels une évacuation hors site devra se faire vers une filière spécifique, impliquant un surcoût de gestion.

Dans le cadre des travaux d'aménagement du site, les sols superficiels et profonds au droit du futur bâtiment seront remaniés. Une partie de ces terres sera à évacuer du site et une partie sera potentiellement réutilisée au droit des espaces verts du site. Au vu des caractéristiques chimiques des matériaux en place sur le site, il est possible de les réutiliser directement sur le site à l'exception des terres au droit :

- du sondage P2 (qui présentent des traces de PCB sur la tranche 0 à 1 m),
- au droit du sondage P8 (qui présentent des traces de PCB sur la tranche 0 à 1 m),
- au droit du sondage P9 (qui présentent des hydrocarbures sur la tranche 0 à 2 m).

A noter que les terres terrassées au droit de P2, P8 et P9 pourraient être réutilisées sur site moyennant des études complémentaires permettant de préciser leurs conditions de réemploi (sous dallage, sous espaces verts...).

Avant réemploi des terres du site, les éventuels déchets qu'elles contiennent (bois, plastiques, ferrailles, pneus, ...) devront être triés et évacués vers des filières adaptées.

La traçabilité de ces mouvements de terres devra être assurée en phase travaux pour préserver la mémoire du site.

7.2.2 Evacuation hors site des terres

Les terres devant être éliminées hors site devront être évacuées en filières spécifiques. Sur la base de leurs caractéristiques physico-chimiques et des critères d'acceptation des filières de traitement, la filière d'élimination identifiée envisageable est la filière ISDI (déchets inertes).

En cas de terrassement et évacuation hors site, les terres impactées au droit des fouilles suivantes devront être éliminées en filières adaptées (de type ISDI+, après confirmation par la filière) :

- P9 (qui présentent des hydrocarbures sur la tranche 0 à 2 m)
- P4, P5, P7, et P13 (qui présentent des teneurs élevées en fractions solubles et/ou sulfates et/ou fluorures).

8. Synthèse et recommandations

8.1 Synthèse

Dans le cadre du projet « Nouveau Groupe Scolaire de la Baume », la ville de Fréjus projette la construction d'un complexe scolaire permettant de rassembler sur un même site deux écoles existantes sis Rue des Combattants d'Afrique du Nord à Fréjus (83).

A ce jour, 3 scénarios d'aménagement sont à l'étude. A la demande de la ville de Fréjus, notre étude se base sur le scénario 1 de la présentation du projet par le COPIL en date du 19/05/2022. Ce scénario prévoit :

- la conservation de l'Espace Boisé Classé (EBC) présent à l'ouest du site ;
- la conservation du front de taille archéologique identifié à l'est du site ;
- la création d'une zone tampon de protection acoustique et contre l'empoussièrement en bordure nord et est du site au vu de la présence à proximité des activités de carrière et de l'autoroute A8 ;
- la construction des locaux des écoles Paul Roux et du Caïs, comprenant des espaces pédagogiques et récréatifs (cours de récréation, préaux)
- la mise en réserve d'un espace dédié aux futurs agrandissements de l'école (capacité de 3 classes supplémentaires à proximité des installations projetées ;
- la construction d'une bibliothèque ;
- la construction d'une salle polyvalente ;
- la construction d'une salle de restauration ;
- la création d'un jardin pédagogique ;
- l'aménagement d'espaces verts ;
- l'aménagement de voiries et parkings de surface.

D'après les données recueilles, le site correspond à des parcelles boisées, puis en partie agricoles depuis 1951 environ. Une petite partie du site à l'est fait partie d'une décharge/carrière aérienne.

Des investigations réalisées en 2019 par GINGER BURGEAP ont permis de mettre en évidence la présence de remblais au droit du site.

Des investigations sur les sols (15 fouilles à la pelle mécanique ont été réalisées entre 0,7 et 2,4 m de profondeur) ont été réalisées le 03 août 2022. L'objectif était de déterminer la qualité des sols au droit du site d'étude.

30 échantillons ont fait l'objet d'analyses conformes à l'arrêté du 12/12/2014.

Les investigations de sols ont montré :

- la présence d'hydrocarbures C10-C40 au droit de P9, avec des teneurs de 250 et 290 mg/kg sur la tranche 0 à 2 m.
- la présence de HAP au droit de P9 avec des teneurs de 3,75 et 10,19 mg/kg sur la tranche 0 à 2 m,
- des traces en surface (sur la tranche 0-1m) de PCB (teneurs de 0,009 mg/kg) au droit de P2 et P8,
- des teneurs élevées en fractions solubles et/ou sulfates et/ou fluorures au droit de P4, P5, P7, et P13.

A l'exception des fouilles P4, P5, P7, P8, P9 et P13, les terres sont inertes au regard de l'arrêté du 12/12/2014.

Au regard des données disponibles, et dans l'hypothèse où les terres impactées identifiées au niveau de P2, P8 et P9 se situent dans l'emprise des terrassements / recouvrements des sols nécessaires à la réalisation du projet, l'état du site apparait compatible avec les usages projetés.

 Réf : CSSPSE222204 / RSSPSE14021-01
 AVI-FLD / CH / GRE
 25/08/2022
 Page 46/48

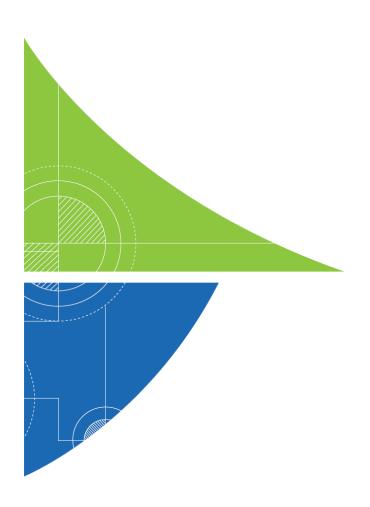
8.2 Recommandations

Dans le cadre de la réalisation du projet, les terres excavées au droit des fouilles P4, P5, P7, P8, P9 et P13 et devant être évacuées hors site, devront être évacuées en filières agrées, de type ISDI+. Cette orientation devra être confirmée au préalable par la filière. GINGER BURGEAP ne pourra être tenu responsable si des terres excavées issues du site ne sont pas évacuées vers des exutoires dument habilités à les prendre en charge.

Globalement, les terres terrassées peuvent être réutilisées sur site, à l'exception des terres terrassées au droit de P2, P8 et P9. (Celles-ci pourraient cependant être réutilisées sur site moyennant des études complémentaires permettant de préciser leurs conditions de réemploi : sous dallage, sous espaces verts...)

Avant réemploi des terres du site ou évacuation hors site, les éventuels déchets qu'elles contiennent (bois, plastiques, ferrailles, pneus) devront être triés et évacués vers des filières adaptées.

L'impact en hydrocarbures en P9 a été retrouvé jusqu'à la limite des investigations, soit 2 m de profondeur. A l'issue des travaux de terrassement, il conviendra de vérifier l'absence de pollution résiduelle en fond de fouille au droit de P9 pour valider l'absence d'impact potentiel.


9. Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de GINGER BURGEAP.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de GINGER BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.
- 5- Un rapport d'étude de pollution et toutes ses annexes identifiées constituent un ensemble indissociable. Dans ce cadre, toute autre interprétation qui pourrait être faite d'une communication ou reproduction partielle ne saurait engager la responsabilité de GINGER BURGEAP. En particulier l'utilisation même partielle de ces résultats et conclusions par un autre maître d'Ouvrage ou pour un autre projet que celui objet de la mission confiée ne pourra en aucun cas engager la responsabilité de GINGER BURGEAP

La responsabilité de GINGER BURGEAP ne pourra être engagée en dehors du cadre de la mission objet du présent mémoire si les préconisations ne sont pas mises en œuvre.

ANNEXES

Annexe 1. Compte rendu de visite de site et reportage photographique

Cette annexe contient 5 pages.

COMPTE RENDU DE VISITE DE SITE

1. Visite sur site

1.1 Identification des interlocuteurs

Date	03/08/2022
Visite réalisée par	P.NERIS
En présence de (nom, fonction, coordonnées)	-
Documents consultés	aucun

1.2 Identification du site

Adresse	Rue des combattants d'Afrique du nord - FREJUS
Références cadastrales	396 et 414 sections AR
Superficie totale	52000 m2 environ
Usage actuel (friche, site industriel en activité, usage agricole)	Pas d'exploitant, toutefois des poids-lourds empruntent les chemins du site pour se rendre à la carrière située au nord-est
Propriétaire actuel	Aucun
Exploitant(s) actuel(s)	Aucun
Site ICPE (oui/non, commentaires)	Non

1.3 Conditions générales d'accès

Site clôturé ? oui / non	Oui
surveillé ? oui / non	Non
Difficultés spécifiques d'accès (→ nécessité d'adapter les machines de sondages/ de faire ouvrir un passage / de récupérer les clés) ? Mettre une photo des accès si nécessaire	Non

1.4 Informations sur les réseaux enterrés et la collecte des eaux pluviales

Pas de collecte d'eau pluviale, les DICT montrent l'absence de réseaux enterrés.

1.5 Bâtiments présents

Non.

1.6 Activités pratiquées et installations potentiellement polluantes (sauf stockages)

Pas d'activité potentiellement polluante si ce n'est la présence de remblais sur le site et d'une carrière à l'abord du site.

1.7 Stockages ou dépôts

Dépôt de remblais sur le site sur plateforme B.

Figure 1: remblais frais observés

1.8 Présence de puits ou piézomètres

3 piézomètres ont été comptabilisés.

Figure 2: localisation des ouvrages

Tableau 1 : Caractéristiques des piézomètres présents sur site

Points de	Repère		Cote r	n NGF	Cote piézo	Cote piézo	Profondeur
mesure	Туре	Hauteur	Sol	Repère	(m/repère)	(m NGF)	(m/repère)
Pz1	Capot	0.56	?	?	4.56	?	9.14
Pz2	Capot	0.6	?	?	2.82	?	7.6
Pz3	Capot	0.75	?	?	7.93	?	9.51

1.9 Rejets liés à l'activité du site

Aucun rejet observé.

1.10 Autres informations

Site remanié sur la plateforme B (présence de remblais fraichement déposés).

1.11 En cas d'intervention

Hauteur min/max sous plafond	Non concerné				
Présence de dalle ? Epaisseur ?	non				
Espaces encombrés ?	Par des remblais				
Evacuation des gaz d'échappement (possibilité de créer un courant d'air ? Prévoir extracteur auto ?)	Non concerné				
Machine adaptée intérieur/extérieur (portatif, géoprobe)	Pelle mécanique				

2. Visite hors site

2.1 Identification des usages hors site

Reporter les principaux usages sur un plan cadastral des environs du site.

Rayon approximatif de la visite autour du site (mètres) :

Etablissements et activités au voisinage du site	Cocher	Localisation *	Commentaires et détails **
Agricole			
Forestier	х	Sur site	Entre plateforme A et D (zone F/F)
Industriel	х	Nord est et est	Après autoroute, Carrière à l'est du site
Commercial	х	Au Nord	
Etablissement sensible ***	х	Au sud-ouest et à l'est	Préciser type : école au sud-ouest et crèche à l'est
Habitat individuel	x	Autour du site	urbain / périurbain Présence de jardins potagers possible Présence de puits privés possible
Habitat collectif			
Autre	х	Camping	A l'est et au sud du site

^{*} localisation par rapport au site (Nord, Sud,... Amont, Aval)

2.2 Milieu naturel

Proximité de cours d'eau ? non
Présence de sources ? non
Proximité d'une zone naturelle sensible ? non
Présence de captages ? possible

2.3 Autres observations

Proximité d'un axe routier important ? oui au nord

Ruissellement? possible

Dénivelé important (pente générale vers...) ? non

^{**} Noter les types de constructions (sur vide sanitaire, sous-sols, plain-pied...)

^{***} établissements scolaires, crèche, établissements sportifs, parcs, jardins publics, jardins ouvriers

▶ Recommandations sur les mesures d'urgence à prendre

Des mesures d'urgence sont-elles à prendre ? $\ \square$ Oui $\ \boxtimes$ Non

Si oui, lesquelles :

Figure 3 : photographie aérienne du site (géoportail)

Annexe 2. Propriétés physico-chimiques

Cette annexe contient 6 pages.

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

+ : 100>S>1

+: 1000 > Pv > 10 Pa (COV) --: S<0.01 mg/l --: S<0.01 mg/l

CAS n°R Pv S symboles Mention de danger Classement cancérogénéicité

UE CIRC (IARC) EPA

METAUX ET METALLOIDES

Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	А
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	А
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
Н	YDROCAR	BURES	AROM	ATIQUES	POLYCYCLIQ	UES		
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	-	-	D
Acenaphtène	83-29-9	-	+	=	-	=	-	-
Fluorène	86-73-7	-	+	-	-	=	3	D

LEGENDE Volatilité : LEGENDE Solubilité :

++: Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) #g/l

mg/l -: 1>S>0.01 mg/l

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 > P> 10-5 Pa (non COV) | + : 100> S>1 mg/l -- : S<0.01 mg/l

		Volatilité	solubilité	Classement		classement	cancérogér	éicité
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène	129-00-0		-	-	-	-	3	D
Benzo(a)anthracène	56-55-3			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Chrysene	218-01-9		-	SGH08, SGH09	H350, H341, H400, H410	C1B M2	3	B2
benzo(b)fluoranthène	205-99-2			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène	207-08-9			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Benzo(a)pyrène	50-32-8			SGH07, SGH08,	H340, H350, H360FD, H317,	C1B M1B	1	А
				SGH09	H400, H410	R1B		
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-	-	3	D
indéno(1,2,3-c,d)pyrène	193-39-5		-	-	-	-	2B	B2

LEGENDE Volatilité : LEGENDE Solubilité :

++: S>100 ++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV)

-: 1>S>0.01 mg/l mg/l

+:100>S>1 + : 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) mg/l

--: S<0.01 mg/l Volatilité solubilité classement cancérogénéicité Classement

Mention de danger CIRC (IARC) S CAS n°R symboles

COMPOSES AROMATIQUES MONOCYCLIQUES

benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	А
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	=	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-

COMPOSES ORGANO-HALOGENES VOLATILS

PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	А
cis 1,2DCE (dichloroéthylène)	156-59-2	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)	156-60-5	TT	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2B	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-

++: S>100

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) - : 10 >P> 10-2 Pa (non COV)

mg/l -: 1>S>0.01 mg/l

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 > P> 10-5 Pa (non COV) + : 100> S>1

7/l --: S<0.01 mg/l

		Volatilité	solubilité	Classement	Montion do danger	classement cancérogénéicité			
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA	
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D	

HYDROCARBURES SUIVANT LES TPH

Aliphatic nC>5-nC6	non adéquat	++	+				
Aliphatic nC>6-nC8	"	++	+				
Aliphatic nC>8-nC10	"	+	-			classement fonction des hydrocarbures	
Aliphatic nC>10-nC12	"	+	-		tout type d'hydrocarbures : H350, H340, H304		
Aliphatic nC>12-nC16	"	-		white spirit, essences spéciales, solvants aromatiques			
Aliphatic nC>16-nC35	"	-					
Aliphatic nC>35	"						
Aromatic nC>5-nC7 benzène	"	++	++	légers, pétroles lampants			
Aromatic nC>7-nC8 toluène	"	++	++	(kérosène):			
Aromatic nC>8-nC10	"	+	+	SGH08			
Aromatic nC>10-nC12	"	+	+				
Aromatic nC>12-nC16	"	-	+				
Aromatic nC>16-nC21	п	-	-				
Aromatic nC>21-nC35	п			1			

MENTIONS DE DANGER

28 mentions de danger physique

- H200 : Explosif instable
- H201: Explosif; danger d'explosion en masse H202 : Explosif ; danger sérieux de projection
- H203 : Explosif : danger d'incendie, d'effet de souffle ou de projection
- H204 : Danger d'incendie ou de projection
- H205: Danger d'explosion en masse en cas d'incendie
- H220 : Gaz extrêmement inflammable
- H221 · Gaz inflammable
- H222 : Aérosol extrêmement inflammable
- H223: Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228: Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'ai
- H251: Matière auto-échauffante : peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261 : Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie; comburant
- H271: Peut provoquer un incendie ou une explosion: comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion
- H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310: Mortel par contact cutané
- H311: Toxique par contact cutané
- H312: Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315 : Provoque une irritation cutanée

- H317 : Peut provoquer une allergie cutanée
- H318: Provoque des lésions oculaires graves
- H319 : Provoque une sévère irritation des yeux
 - H330: Mortel par inhalation
- H331: Toxique par inhalation
- H332: Nocif par inhalation
- H334: Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- . H335 : Peut irriter les voies respiratoires
- H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques «indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques < indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert> H350: Peut provoquer le cancer <indiquer la voie d'exposition s'il est • H370: Risque avéré d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> < indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne
- dangera conduit au même danger> H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il • H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition danger>
- autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est autre voie d'exposition ne conduit au même danger?
- H362 : Peut être nocif pour les bébés nourris au lait maternel
- ne conduit au même danger> H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl • H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont est connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée cindiquer la voie d'exposition s'il est H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i: Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité H360D: Peut nuire au foetus
- H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus
- H360Fd: Peut nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.

▶ 5 mentions de danger pour l'environnement

- H400: Très toxique pour les organismes aquatiques
- H410: Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H411 : Toxique pour les organismes aquatiques, entraı̂ne des effets néfastes à long terme
- H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H413: Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige - produit qui détruit la couche d'ozone).
- SGH08: Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires - peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC		
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :				
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A : Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme		
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé				
	B1 : Preuves limitées chez l'homme			
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme		
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme		
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme		
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme		

De Classification en termes de mutagénicité

U

M1 (H340): Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée.

M1A : Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.

M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

M2 (H341): Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

▶ Classification en termes d'effets reprotoxiques

UE							
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd ou H360fD) : Reprotoxique avéré ou présumé	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.						
	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.						

classées dans cette catégorie lorsque les résultats des études ne sont pas suffisamment probants pour justifier une classification dans la catégorie 1 mais qui font apparaître un effet indésirable sur la fonction sexuelle et la fertilité ou sur le développement.

Annexe 3. Méthodes analytiques, LQ et flaconnage

Cette annexe contient 2 pages.

AGROLAB Flaconnage

	AL-West Aromatische en	AL-West	AL-West		At more	
Nom Hollandais	chloorhoudende oplosmiddelen	Waterdampvluchtige fenolen	Cyanide	Methaan/ethaan/etheen CKW- afbraak	pH/Ec	Blanco
Equivalence Française	BTEX, COHV	Indice phénols	Cyanures	Méthane/éthane/éthylène biodégradation, paquet étendu	pH/Conductivité	Blanc
Contenance	100 mL	100 mL	100 mL	100 mL	100 mL	500 mL
Conservateur	HNO3	H3PO4/CuSO4	NaOH	HNO3	sans	sans
	HCT méthode interne - 100 mL BTEX et COHV - 100 mL	Indice phénols - 40 mL	Cyanures libres - 40 mL Cyanures totaux - 40 mL	Méthane/éthane/éthylène biodégradation, paquet étendu - 100 mL	Chrome VI - 100 mL Conductivité - 50 mL	Alcools et solvants polaires - 100 mL AOX - 500 mL
Analyses	Chlorobenzènes volatils - 80 mL GC-MS volatils - 100 mL Hydrocarbures volatils C6-C10 - 80 mL Solvants bromés - 80 mL				Fluorures - 20 mL Métaux lourds avec filtration au labo - 100 mL Nitrate - 40 mL Nitrite - 40 mL	Biphényl et biphényléthers - x 2 bouteilles Bromures - 60 mL Chlorobenzènes non volatils - x 2 bouteilles Chlorures - 40 mL
Quantité	GOWARIS BIOINES - 60 HIL				pH - 40 mL Sulfate - 60 mL	Couleur - 100 mL DBO5 - x 2 bouteilles
	A. 1000					Dioxines - x 2 bouteilles GC-MS non volatils - x 2 bouteilles HAP Interne - 100 mL HAP ISO - x 2 bouteilles Hulles et graisses - x 2 bouteilles
Nom Hollandais	stikstof ammonium /stikstof Kjeldahl/CZV	Zware metalen	ТРН	cihoor - en alkylfenolen		Matières inhibitrices - x 2 bouteilles
Equivalence	DCO /azote ammoniacal/azote	Métaux lourds	EOX HCT ISO HCT 10 µg/L	Phénois et chlorophénois		MES - 500 mL
Française Contenance	Kjeldahl/phosphore total 250 mL	100 mL	500 mL	500 mL		INIES - 300 IIIE
Conservateur	250 mL H2SO4	HNO3	HNO3	H3PO4		Organoétains - 500 mL
Code étiquette	41-8-250 / LV2490	2-39-8 / LV2265	945-5 / LV2634	23-55-5 / LV2600		
	Ammonium NH4+ - 50 mL	Métaux lourds - 100 mL	EOX - x 2 bouteilles	Phénols et chlorophénols - x 2 bouteilles		Orthophosphates - 60 mL PCB - 100 mL
	Azote Kjeldhal - 100 mL COT - 200 mL		HCT ISO - x 2 bouteilles HCT seuil 10 µg/l - x 2 bouteilles	accioned		Pesticides organo-N et P - x 2 bouteilles
Analyses			10 pg/ X 2 coutenes			Pesticides organochlorés - 100 mL
	CIT - 200 mL DCO - 80 mL		TPH-MADEP - x 2 bouteilles			Sulfures - 400 mL
	DCO - 00 IIIL					
	Phosphore total - 60 MI					

Matrice sols

Désignation 🏋	Catégorie d'article	Méthode	LOUII EFÇ	Unités
Cyanures libres		NEN 6655 eq. ISO/DIS 17380	1	mg CN/kg
Cyanures totaux	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380 - DIN ISO 11262	1	mg CN/kg
Indice phénols	Autres/Sols & Déchets/Analyses	EN ISO 14402	0,1	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40; PROFIL ORGANIQUE QUALITATIF (C10 - C40)	Hydrocarbures & COHV/Sols & Déchets/Analyses	CPG/FID Méthode interne, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20-C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40) chromatogramme fourni	20	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40 ; PROFIL	Hydrocarbures & COHV/Sols &	CPG/FiD Méthode ISO 16703, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20-	20	mg/kg
ORGANIQUE QUALITATIF (C10 - C40) Hydrocarbures totaux volatils (C6 - C10) découpage fractions C6-C8 et > C8-C10	Déchets/Analyses Hydrocarbures & COHV/Sols & Déchets/Analyses	C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40), chromatogramme fourni HS/CPG/MS méthode interne basé sur ISO 22155 (Head-Space): Somme des C6-C10 et découpage fractions C6-C8 et >C8-C10	1	mg/kg
Solvants chlorés (13 composés, chlorure de vinyle inclus)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylène, Tetrachlorure de Carbone, Trichloréthylène	0,02 à 0,1	mg/kg
Solvants chlorés (19 composés MACAOH)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylene, 1,2 Cis-Dichloroéthylene, 1,2 Trans-Dichloroéthylene, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylene, Tetrachlorure de Carbone, Trichloréthylene + extension MACAOH: Chlorométhane, Chloroéthane, Pentachloroéthane, Hexachloroéthane, 1,1,1,2-Tétrachloroéthane, 1,1,2,2-Tétrachloroéthane	0,02 à 0,5	mg/kg
BTEX (5 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space) : Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène Méthode interne basé sur ISO 22155 (Head-Space) : Benzène, Toluène, Ethyl	0,05-0,1	mg/kg
BTEX bilan étendu (13 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	benzène, m+p Xylène, o-Xylène, Naphtalène, Styrène, a-Méthylstyrène, Propylbenzène, iso-Propylbenzène, 1,2,3-Triméthylbenzène, 1,2,4-Triméthylbenzène, 1,3,5-Triméthylbenzène	0,05-0,1	mg/kg
Chlorobenzènes volatils (7 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	par HS /GC/MS , basé sur ISO 22155 : Chlorobenzènes volatils :monochlorobenzène ; 1,2-dichlorobenzène ; 1,3-dichlorobenzène ; 1,4-dichlorobenzène ; 1,2,3-trichlorobenzène ; 1,2,4-trichlorobenzène ; 1,2,5-trichlorobenzène	0,1	mg/kg MS
Chlorobenzènes non-volatils (4 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne, analyse selon ISO 10382 : 1,2,3,4-tétrachlorobenzène ; 1,2,3,5/1,2,4,5-tétrachlorobenzène ; pentachlorobenzène ; hexachlorobenzène	1	μg/kg MS
COV bromés	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (HS): Bromochlorométhane, Dibromochlorométhane, Dichlorobromométhane, Dibromoethane, Tribromométhane (Bromoforme)	0,1	mg/kg
Hydrocarbures par TPH (Liste réduite)	Hydrocarbures & COHV/Sols & Déchets/Analyses	8 fractions aliphatiques + 8 fractions aromatiques (Cf Annexe 1). Analyse par GC/MS méthode interne	-	voir Annexe
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne: Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène	0,05	mg/kg
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	ISO 13877: Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène	0,05	mg/kg
PCB congénères réglementaires (7 composés)	PCB Dioxines et furanes/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire) : PCB 28, 52, 101, 118, 138, 153, 180	1	μg/kg
PCB de type dioxine (12 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	Méthode dériveée de la méthode EPA 1613, par CPG SM-HR (PCB n° 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189)	1 à 10	ng//kg
Dioxines et furanes (17 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	selon la NF EN 1948 , GC-SM haute résolution -	1	ng//kg
Pesticides organochlorés (21 composés)	Pesticides/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire): HCH alpha, HCH béta, HCB, Lindane, HCH delta, Heptachlore, cis-Heptachlore époxyde, Endosulfan alpha, Aldrine, Dieldrine, Endrine, Isodrine, Telodrine, Endosulfan alpha, o,p'-DDE, p,p'-DDD, p,p'-DDD, o,p'-DDT, p,p'-DDT, trans-chlordane	1	µg/kg
Pesticides Organo-Azotés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Atrazine, Cyanazine, Desméthrine, Prométhrine, Propazine, Simazine, Terbutrine, Terbutylazine	0,1 à 0,2	mg/kg
Pesticides Organo-Phosphorés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Azinphos-éthyle, Azinphos-méthyle, Bromophos- éthyle, Bromophos-méthyle, Chloropyrophos-éthyle, Coumaphos, diazinon, Diméthoate, Disulphoton, Ethion, Fénitrothion, Fenthion, Malathion, Méthidathon, Mévinphos, Parathion-méthyle, Parathion-éthyle, Pyrazophos, Triazophos, Trifluralin.	0,1 à 0,5	mg/kg
Arsenic	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg As/kg
Baryum	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Ba/kg
Cadmium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,1	mg Cd/kg
Chrome total	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cr/kg
Chrome hexavalent	Métaux/Sols & Déchets/Analyses	DIN 38405-D24	1	mg CrVI/kg
Cobalt	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	0,5	mg Co/kg
Cuivre	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cu/kg
Mercure	Métaux/Sols & Déchets/Analyses	ISO 16772	0,05	mg Hg/kg
Nickel	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Ni/kg
Plomb	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Pb/kg
Sélénium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	1	mg Se/kg
Zinc	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Zn/kg
Antimoine	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Sb/kg

Annexe 4. Fiches d'échantillonnage des sols

Cette annexe contient 15 pages.

	SINGER		Rue des co	mbattants d'Afrique du Nord - Fréju	s (83)		Annexe
Bl	JRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Interven	ge n° : P1 nant GINGER BURGEAF 03/08/2022 on météorologique :	: PNER Heure : Ensoleillé	Profondeu	ant: CEBTP pole Hydro e de sondage: Pelle mécanique ur atteinte (m/sol): 2 de forage (mm) & gaine: 55		l'échantillon : ponctuel ☑ composite, préciser de l'échantillਓn :	moyen les sous échantillons :
	ntion du sondage 001553,668	Y: 6269967		<u>de terrain :</u> ^{☑Oui} □Non ☑ Réf. Matériel :		_	tri (<0,5cm / <2cm)
ĺ	on : GPS de nappe d'un piézomèt	Z (sol) - NGF: 48,211 re proche (si présent) :	XRF Tubes réa Autre	Réf. Matériel : ctif Préciser tubes : Préciser :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast truelle / pelle à main	
Pz n° : Sondag	e pour <u>échantillons témo</u>	NS (m/sol) : oins :□Oui ☑Non	* mesure l Doublons Blanc mét	Da - Du	Conditionner	ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s sac	
Remarg	ues: RAS			re: AGROLAB voi au laboratoire: 04/08/2022	Conservation	n des échantillons : glacière ☐ carton	autre :
		E GÉOLOGIQUE	T		ATIONS ET M	ESURES	T
Prof. (m)		ription umidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°
0.50	Remblais lim	ons et graves		Brun-ocre		0,0	P1(0-1)
1.50		ons et graves imons argileux	-	Brun-beige Bois		0,0	P1(1-2)
2.50 = 3.50 = 4.50 = 5.50 = 6 = 6	Vue	d'ensemble de la fouille		Lithologie de la fo	uille P1		
7				Fouille rebouchée	d'		

ZGING3R			Rue des co	e des combattants d'Afrique du Nord - Fréjus (83)				
Bl	JRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204	
Interven Date :	ge n° : P2 lant GINGER BURGEA 03/08/2022 In météorologique :	F PNER Heure : Ensoleillé	Profondeu	ant : CEBTP pole Hydro e de sondage : Pelle mécanique ur atteinte (m/sol) : 1,1 de forage (mm) & gaine : 55			moyen les sous échantillons :	
	ution du sondage 001528,568	Y: 6270009		de terrain : ^{☑Oui} □Non ☑ Réf. Matériel :		de l'échantillि : homogénéisिation autre :	aucune tri (<0,5cm / <2cm)	
Projection	on: GPS	Z (sol) - NGF : 54,298	XRF Tubes réa	Réf. Matériel :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast		
Pz n° : Sondag	e pour <u>échantillons tém</u>	NS (m/sol) : oins : □Oui □Non	Doublons	F10 - F111		ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s		
Remarg		Grés à 1,1 m	Blanc mét Laboratoir Date d'en		□ Conservation □ □	n des échantillons : glacière	autre :	
	COUF	PE GÉOLOGIQUE		OBSERVA	TIONS ET MI	carton ESURES		
Prof. (m)	Desc	cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer	1	Analyses de terrain	N°	
0.50		ono-graveleux	-	Brun-ocre + blocs < 15 cm ; ferrailles + câb		0,0	P2(0-1)	
1.50 = 1.		d'ensemble de la fouille		Lithologie de la fo	uille P2			
7				Fouille rebouchée				
9.50								

ZGING∃R				e des combattants d'Afrique du Nord - Fréjus (83)				
Bl	JRGEAP		FICH	IE D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204	
Interven	ge n°: P3 ant GINGER BURGEA 03/08/2022 an météorologique:	F PNER Heure : Ensoleillé	Profonde	ant: CEBTP pole Hydro e de sondage: Pelle mécanique ur atteinte (m/sol): 2,40 de forage (mm) & gaine: 55	0	l'échantillon : ponctuel composite, préciser	moyen les sous échantillons :	
Localisa	ution du sondage	Y: 6270089	Analyses	de terrain : ☑Oui □Non ☑ Réf. Matériel :		de l'échantillon : homogénéisation autre :	aucune tri (<0,5cm / <2cm)	
Projection	on: GPS	Z (sol) - NGF : 51,565	XRF Tubes réa	Réf. Matériel :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast		
Pz n° :	e pour <u>échantillons tém</u>	NS (m/sol) :	* mesure Doublons			ment d'échantillons : flacon sol brut + flacon flacon / pot sol brut s		
Remarg	ues: RAS		Blanc mé <u>Laboratoi</u> Date d'en		Conservation	n des échantillons : glacière	autre :	
	COUF	PE GÉOLOGIQUE		OBSERVA	TIONS ET M	carton ESURES		
Prof. (m)		cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°	
0 =		rgilo-limoneux	numidité des sois	Corps etrangers (plastique, macnerer)			
0.50	Limons sable	eux avec galets		Brun-ocre		0,3	P3(0-1)	
1.50	Limons	s argileux	-	Brun ; Déchets (Bois, plastique, pne	eus)	0,5	P3(1-2)	
2 =							P3(2-2,4)	
3.50								
4.50								
5.50	Vue	d'ensemble de la fouille		Fouille reboud	rhée			
6.50								
7.50								
8 =								
8.50								
				I				
9 =								
9.50								
10								

	SINGER URGEAP	Rue des combattants d'Afrique du Nord - Fréjus (83)							
BL	JRGEAP		FICH	FICHE D'ÉCHANTILLONNAGE DE SOLS					
Sonda	ge n°: P4		Sous-traita	ant: CEBTP pole Hydro	Confection d	'échantillon :	CSSPSE222204		
	ant GINGER BURGEAF	PNER		e de sondage : Pelle mécanique		ponctuel 🗹	moyen		
	03/08/2022	Heure :		rr atteinte (m/sol): 1,4		•	les sous échantillons :		
Conditio	n météorologique :	Ensoleillé		de forage (mm) & gaine : 55					
					Préparation o	de l'échantill🖟 :	aucune		
Localisa	ition du sondage		<u>Analyses</u>	de terrain : ☑Oui □Non	☑	homogénéisation	tri (<0,5cm / <2cm)		
X: 10	001456,673	Y: 6270111	,097 PID *	Réf. Matériel :		autre :			
Projection	on: GPS	Z (sol) - NGF: 55,347	XRF	Réf. Matériel :	Méthode d'é	chantillonnage:			
			Tubes réa	ctifs Préciser tubes :		emporte pièce (plast	ique / autre)		
Niveau (de nappe d'un piézomèt	re proche (si présent) :	Autre	Préciser :	✓	truelle / pelle à main	/ autre		
Pz n° :		NS (m/sol):	* mesure f	PID de l'air ambiant au poste		nent d'échantillons :			
				<u>d'échantillonnage :</u>		flacon sol brut + flac	on méthanol		
Sondag	e pour <u>échantillons tém</u> e	oins : □Oui ☑Non	Doublons	Da . Du		flacon / pot sol brut s	seul (PE / verre)		
			Blanc mét			sac	autre :		
Remarq	ues: RAS			<u>e:</u> AGROLAB	Conservation	n des échantillons :			
			Date d'env	voi au laboratoire : 04/08/2022		glacière	autre :		
						carton			
Dest		E GÉOLOGIQUE	Venus all		TIONS ET ME	SURES	T		
Prof. (m)		ription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°		
0 =									
	Pemblais arailaux ± "	moneux avec galets et		Beige brun puis brun-ocre ; Bouts de bois,	enrobó ot				
0.50		ocs		plastiques	enione er	1,0	P4(0-1)		
1 3			-						
I ₁ ⊒									
	Limons	sableux		-		0,5	P4(1-1,4)		
1 =						0,5	1 4(1-1,4)		
1.50									
1 =		A ST THE W							
2			Anta Ma						
1 =	1		255	A REACTOR					
2.50									
1 =									
1 , =									
3 =		. 化压剂等		与发展的表现在是一个	Part 2	MU XXXX			
1 3			1						
3.50									
			100		1				
4									
1 =	D' FOR					A - The			
4.50		*			STO SE	The state of the s			
4.50	7		×	Lithologie de la fo	uille P4				
1 =									
5	A C	R	The same						
1 =	Vue	d'ensemble de la fouille	1						
5.50									
1 =									
6 ∃									
1 =									
6.50									
1 =			The same of the sa		- Alberta				
7									
∃			50.4						
7.50									
=====================================									
╽╻╡			the same	The second secon					
8 =			The state of						
=			建筑						
8.50			The second	The second secon					
∃				Fouille rebouchée					
9 =				. 520 1050401100					
=									
9.50									
10									

GINGER BURGEAP		Rue des combattants d'Afrique du Nord - Fréjus (83)						
			FICH	FICHE D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204	
Sondage n° : P5 Intervenant GINGER BURGEAF PNER Date : 03/08/2022 Heure : Condition météorologique : Ensoleillé		Technique Profondeu	Sous-traitant : CEBTP pole Hydro Technique de sondage : Pelle mécanique Profondeur atteinte (m/sol) : 1,10 Diamètre de forage (mm) & gaine : 55		l'échantillon : ponctuel ☑ composite, préciser de l'échantillon :	moyen les sous échantillons : . aucune		
Localisation du sondage X: 1001555,35 Y: 6270045,075				de terrain : ☑Oui □Non ☑ Réf. Matériel :		homogénéisation autre :	tri (<0,5cm / <2cm)	
Projection: GPS Z (sol) - NGF: 54,935 Niveau de nappe d'un piézomètre proche (si présent):			XRF Tubes réa	Réf. Matériel :	Méthode d'échantillonnage : □ emporte pièce (plastique / autre) ☑ truelle / pelle à main / autre			
Pz n° : NS (m/sol) : Sondage pour <u>échantillons témoins</u> : □Oui ☑Non			Doublons	F1 F1.:	Conditionnement d'échantillons : flacon sol brut + flacon méthanol flacon / pot sol brut seul (PE / verre) sac autre :			
Remarques : Refus sur grés à 1,1 m			Laboratoir	Blanc méthanol : Lioui Lion Laboratoire : AGROLAB Date d'envoi au laboratoire : 04/08/2022		Conservation des échantillons : glacière autre : carton		
	COUP	PE GÉOLOGIQUE	<u> </u>	OBSERVA	ATIONS ET M	ESURES		
Prof. (m)		cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer.		Analyses de terrain	N°	
0 =	Argiles e	et graviers	Humide	Orangé-brun		0,0	P5(0-0,4)	
0.50	Argiles li	Argiles limoneuses		Brun-ocre		0,0	P5(0,4-1,1)	
1.50 = 2 = 2.50 = 3 = 3.50 = 4 = 5 = 5.50 =		d'ensemble de la fouille		Lithologie de la fo	puille P5			
6.50								
7 =								
7.50								
8.50								
9.50								

/C	SINGER Jrgeap	Rue des combattants d'Afrique du Nord - Fréjus (83)					
BL	JRGEAP	FICHE D'ÉCHANTILLONNAGE DE SOLS					RSSPSE14021 CSSPSE222204
Sondage n°: P6 Intervenant GINGER BURGEAF PNER Date: 03/08/2022 Heure: Condition météorologique: Ensoleillé			Technique Profondeu	Sous-traitant : CEBTP pole Hydro Confection d'échantillon : Technique de sondage : Pelle mécanique □ ponctuel Profondeur atteinte (m/sol) : 2,4 □ composite, Diamètre de forage (mm) & gaine : 55 Préparation de l'échantille			moyen les sous échantillons :
Localisation du sondage X: 1001585,51 Y: 6270060,095				Analyses de terrain : Doui Non PID * Réf. Matériel : XRF Réf. Matériel : Tubes réactifs Préciser tubes : Autre Préciser : *mesure PID de l'air ambiant au poste			aucune tri (<0,5cm / <2cm)
Projection : GPS Z (sol) - NGF : 54,727 Niveau de nappe d'un piézomètre proche (si présent) : Pz n° : NS (m/sol) : Sondage pour <u>échantillons témoins</u> : □Oui ☑Non Remarques : RAS						Méthode d'échantillonnage :	
Prof.		E GÉOLOGIQUE	Venues d'eau /		TIONS ET ME		
0.50	(granulométrie, texture, h	ription umidité, dalle, remblais) sableux	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer Beige		Analyses de terrain 0,3	N° P6(0-1)
1.50	Limons graveleux argileux		-	- Brun		0,0	P6(1-2)
2.50 3 3.50 4							
5.50	Vue	d'ensemble de la fouille		Lithologie de la foi	ulle Po		
7 7.50 8							
9				Fouille rebouchée			
9.50							

	SINGER URGEAP		Rue des co	mbattants d'Afrique du Nord - Fréjus	s (83)		Annexe
Bl	URGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Interver Date :		PNER Heure : Ensoleillé	Profondeu	e de sondage : Pelle mécanique ur atteinte (m/sol) : 2 de forage (mm) & gaine : 55		ponctuel ☑ composite, préciser l	moyen les sous échantillons :
	ation du sondage 001630,677	Y: 6270092,3		de terrain : ☑Oui □Non ☑ Réf. Matériel :		de l'échantillि⊓ : homogénéisation autre :	aucune tri (<0,5cm / <2cm)
Projecti Niveau Pz n° :	on : GPS de nappe d'un piézomètr ge pour <u>échantillons témo</u>	Z (sol) - NGF: 60,396 re proche (si présent): NS (m/sol):	XRF Tubes réa Autre * mesure f Doublons Blanc mét Laboratoir	Réf. Matériel : ctifs Préciser tubes : Préciser : PlD de l'air ambiant au poste d'échantillonnage : Doui	Méthode d'éd	chantillonnage : emporte pièce (plast truelle / pelle à main nent d'échantillons : flacon sol brut + flaco flacon / pot sol brut s sac des échantillons :	/ autre
5 (E GÉOLOGIQUE			TIONS ET ME	SURES	
Prof. (m)	Descr (granulométrie, texture, hu		Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°
0.50	Remblais limons sablet	ux et graves avec blocs	-	Verdâtre ; odeur de matière organique ; p	lastiques	0,2	P7(0-1)
1.50	-	bes, bambous et roseau	Très humide	Brun ; racines et matière organiqu	e	0,9	P7(1-2)
2.50 = 3 = 3.50 = 4 = 4.50 = 4				Lithologie de la for	uille P7		
5.50	Vue d	d'ensemble de la fouille					
6.50 — 7 — 7.50 —							
8.50 -				Fouille rebouchée			
9.50							

	SINGER		Rue des co	mbattants d'Afrique du Nord - Fréju	s (83)		Annexe	
BL	JRGEAP		FICH	FICHE D'ÉCHANTILLONNAGE DE SOLS				
Interven Date : (ge n°: P8 ant GINGER BURGEAF 03/08/2022 n météorologique :	: PNER Heure : Ensoleillé	Profondeu	ant: CEBTP pole Hydro e de sondage: Pelle mécanique ur atteinte (m/sol): 2 de forage (mm) & gaine: 55		réchantillon: ponctuel composite, préciser de l'échantill⊌ :	moyen les sous échantillons : . aucune	
	tion du sondage 001576,724	Y: 6270040		<u>de terrain :</u> ^{☑Oui} □Non ☑ Réf. Matériel :			tri (<0,5cm / <2cm)	
	on : GPS de nappe d'un piézomèt	Z (sol) - NGF: 57,73	XRF Tubes réa Autre	Réf. Matériel : ctif Préciser tubes : Préciser :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast truelle / pelle à main		
Pz n° : Sondage	e pour <u>échantillons témo</u>	NS (m/sol) : oins :□Oui ☑Non	* mesure l Doublons Blanc mét	Da : D::	Conditionner □ □ □	ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s sac		
Remarq	ues: RAS			e: AGROLAB voi au laboratoire: 04/08/2022	Conservation	n des échantillons : glacière	autre :	
		E GÉOLOGIQUE			TIONS ET MI	ESURES	_	
Prof. (m)		ription umidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°	
0.50	Remblais limono-argile	eux avec galets et blocs	-	Beige		0,3	P8(0-1)	
1.50	Limons	sableux		Brun ; bois noirs		0,0	P8(1-2)	
2.50								
5 =		d'ensemble de la fouille		Lithologie de la fo	uille Po			
5.50	Vue	d ensemble de la louille						
6.50								
7.50								
9				Fouille rebouchée				
9.50								

V G	INGER IRGEAP		Rue des co	mbattants d'Afrique du Nord - Fréjus	s (83)		Annexe
BU	IRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Intervena Date: 0	e n° : P9 ant GINGER BURGEAF 3/08/2022 n météorologique :	: PNER Heure : Ensoleillé	Profondeu	ant : CEBTP pole Hydro e de sondage : Pelle mécanique ur atteinte (m/sol) : 2 de forage (mm) & gaine : 55		ponctuel	moyen les sous échantillons :
	ion du sondage 01561,404	Y: 6270025,92		de terrain : ^{☑Oui} □Non ☑ Réf. Matériel :	-	de l'échantill : homogénéis ation autre :	aucune tri (<0,5cm / <2cm)
Projectio	n: GPS	Z (sol) - NGF : 58,134 re proche (si présent) :	XRF Tubes réa	Réf. Matériel :		chantillonnage : emporte pièce (plast truelle / pelle à main	
Pz n° : Sondage	pour <u>échantillons témo</u>	NS (m/sol) : pins :□Oui ☑Non	* mesure Doublons Blanc mét		Conditionner □ □ □	ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s sac	
Remarqu			Laboratoir	e: AGROLAB voi au laboratoire: 04/08/2022		n des échantillons : glacière □ carton	autre :
		E GÉOLOGIQUE			TIONS ET MI	ESURES	
Prof. (m)			Venues d'eau / numidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°
0.50	Argiles limone	euses et blocs	-	Traces noirs, couleur orange beige ; pas	d'odeur	0,0	P9(0-1)
1.50	Arg	giles	Très humide	Beige orange		0,0	P9(1-2)
2.50							
3.50							
4.50				Lithologie de la for	uille P9		
5.50	Vue	d'ensemble de la fouille					
6							
6.50							
7.50							
9				Fouille rebouchée			
9.50							
=							

	SINGER JRGEAP		Rue des co	mbattants d'Afrique du Nord - Fréju	s (83)		Annexe
BL	JRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Interven Date : (ge n°: P10 ant GINGER BURGEA 03/08/2022 n météorologique :	F PNER Heure : Ensoleillé	Profonded	ant : CEBTP pole Hydro e de sondage : Pelle mécanique ur atteinte (m/sol) : 0,8 de forage (mm) & gaine : 55			moyen les sous échantillons :
	tion du sondage 001554,424	Y: 6270068		de terrain : ^{☑Oui} □Non ☑ Réf. Matériel :	-	de l'échantillि : homogénéisिation autre :	aucune tri (<0,5cm / <2cm)
Projection	on: GPS	Z (sol) - NGF : 58,997	XRF Tubes réa	Réf. Matériel :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast	•
Pz nº : Sondage	e pour <u>échantillons tém</u>	NS (m/sol) : oins : □Oui ☑Non	* mesure Doublons Blanc mét	Ele : Eli	Conditionner	ment d'échantillons : flacon sol brut + flac flacon / pot sol brut s	seul (PE / verre)
Remarq		grés à 0,8 m	Laboratoir	ilalioi :		n des échantillons : glacière	autre :
	COUF	PE GÉOLOGIQUE	<u>'</u>		TIONS ET MI	ESURES	
Prof. (m)		cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°
0.50	Limons	et graves	-	Brun-ocre		0,6	P10(0-0,8)
1.50		d'ensemble sur la fouille		Lithologie de la fou	uille P10		
7				Fouille rebouchée			

GINGER BURGEAP		Rue des co	mbattants d'Afrique du Nord - Fréjus	s (83)		Annexe
BURGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Sondage n° : P11		Sous-traita	ant: CEBTP pole Hydro	Confection d		0001 01222204
Intervenant GINGER BURGEAF		1	e de sondage : Pelle mécanique	_	ponctuel	moyen
	Heure : Ensoleillé		rr atteinte (m/sol): 0,8 de forage (mm) & gaine: 55		composite, preciser	les sous échantillons :
					de l'échantillப் :	aucune
Localisation du sondage			de terrain : ☑Oui □Non		homogénéisation	tri (<0,5cm / <2cm)
	Y: 6270059,	267 PID * XRF	Réf. Matériel :		autre :	
Projection: GF3	Z (sol) - NGF: 62,015	Tubes réa	Ttor. Matorior.	_	chantillonnage : emporte pièce (plast	ique / autre)
Niveau de nappe d'un piézomètr	e proche (si présent) :	Autre	□ Préciser :	_	truelle / pelle à main	*
Pz n° :	NS (m/sol):	* mesure I	PID de l'air ambiant au poste	_	nent d'échantillons :	
0 d (-b Cll ((ins · □Oui ☑Non	Doublons	<u>d'échantillonnage :</u> . □Oui ☑Non		flacon sol brut + flaco	
Sondage pour <u>échantillons témo</u>	ins : Lear Enon	Blanc mét			flacon / pot sol brut s	autre :
Remarques :		Laboratoir		Conservation	des échantillons :	4440
Refus sur gi	rés à 0.8 m	Date d'env	voi au laboratoire : 04/08/2022		glacière	autre :
					carton	
Prof. Descr	E GÉOLOGIQUE	Venues d'eau /	Observations (aspect, couleur, odeur)	TIONS ET ME		
(m) (granulométrie, texture, hu		humidité des sols	Corps étrangers (plastique, machefer)	Analyses de terrain	N°
Remblais sab	oles et graves	-	Brun-ocre		0,5	P11(0-0,8)
0.50	-					
Gr	és					
1 =						
=			《李子》 (1) (1) (2) (2) (3)			
1.50				、山发 后。		
2 =						
2	A CONTRACTOR	V.				
2.50		New X		を 100		
2.50						
3						
		n.				
3.50		4.4.				
=						
4					Sirk	
4.50	PTEN		The state of the s			
3			Lithologie de la fou	ille P11		
5						
Vue	d'ensemble de la fouille					
5.50						
3						
6						
=						
6.50						
=			11			
7				49.1		
=		12h				
7.50						
₫						
8 =		The second				
3						
8.50						
_ =		'	Fouille rebouchée			
9 =						
=						
9.50						
10						
.~ =						1

V G	INGER IRGEAP		Rue des co	mbattants d'Afrique du Nord - Fréjus	s (83)		Annexe
BU	IRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Intervena Date: 0		PNER Heure : Ensoleillé	Profondeu	ant : CEBTP pole Hydro e de sondage : Pelle mécanique ur atteinte (m/sol) : 2 de forage (mm) & gaine : 55		ponctuel composite, préciser l	moyen les sous échantillons :
	ion du sondage 01605,944	Y: 6270010,		de terrain : ☑Oui □Non ☑ Réf. Matériel :	. 🗵	-	tri (<0,5cm / <2cm)
Niveau d Pz n° :	e nappe d'un piézomèti pour <u>échantillons témo</u>	NS (m/sol) :	Doublons Blanc mét	☐ Préciser : PID de l'air ambiant au poste d'échantillonnage : □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Conditionnen	des échantillons :	/ autre
	COUP	E GÉOLOGIQUE	<u> </u>	OBSERVA	TIONS ET ME		
Prof. (m)		ription umidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°
0.50		ono-graveleux		Brun ; blocs et racines	,	0,2	P12(0-1)
1.50	Limons	argileux	-	Gris-brun ; câbles électriques		0,0	P12(1-2)
2.50 3 3.50 4							
5.50	Vue d	d'ensemble sur la fouille		Lithologie de la fou	IIIIE P12		
6.50							
7.50							
8.50				Fouille rebouchée			
9.50							
10							

V G	SINGER		Rue des co	ombattants d'Afrique du Nord - Fréju	s (83)		Annexe
BL	JRGEAP		FICH	IE D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Interven Date : (ge n°: P13 ant GINGER BURGEA 03/08/2022 n météorologique :	F PNER Heure : Ensoleillé	Profonde	cant : CEBTP pole Hydro e de sondage : Pelle mécanique ur atteinte (m/sol) : 2 de forage (mm) & gaine : 55		l'échantillon : ponctuel ☑ composite, préciser de l'échantill ♂:	moyen les sous échantillons : . aucune
	tion du sondage 001502,892	Y: 6269929		de terrain : Oui Non Réf. Matériel :	Preparation □	homogénéisation autre :	tri (<0,5cm / <2cm)
Projection	on : GPS de nappe d'un piézomè	Z (sol) - NGF: 49,764 tre proche (si présent):	XRF Tubes réa Autre	Réf. Matériel :	Méthode d'é □ ☑	chantillonnage : emporte pièce (plast truelle / pelle à main	•
Pz n° : Sondage	e pour <u>échantillons tém</u>	NS (m/sol) : oins : □Oui ☑Non	* mesure Doublons Blanc mé	Co Cv.	Conditionnel	ment d'échantillons : flacon sol brut + flac flacon / pot sol brut s	seul (PE / verre)
Remarq	ues : RAS		Laboratoi	unanor.		n des échantillons : glacière	autre :
	COUF	PE GÉOLOGIQUE			TIONS ET M	ESURES	
Prof. (m)		cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer		Analyses de terrain	N°
0.50	Remblais limon	s sablo-graveleux	-	Brun ; morceau de tuiles		0,0	P13(0-1)
1.50	Argiles limoneu	ises avec graves		Verdâtre beige		0,0	P13(1-2)
2.50							
3.50					後人		
4.50 5	Vue	d'ensemble de la fouille		Lithologie de la fou	uille P13		
6.50							
7 =							
7.50			1.00				
8.50							
9 =				Fouille rebouchée			
9.50							

/ G	SINGER Jrgeap		Rue des co	mbattants d'Afrique du Nord - Fréju	s (83)		Annexe
BL	JRGEAP		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204
Interven	ge n° : P14 ant GINGER BURGEAF 03/08/2022 n météorologique :	PNER Heure : Ensoleillé	Profondeu	ant: CEBTP pole Hydro e de sondage: Pelle mécanique ur atteinte (m/sol): 0,70 de forage (mm) & gaine: 55			moyen les sous échantillons :
	tion du sondage	Y: 6269979		de terrain : ☑Oui □Non ☑ Réf. Matériel :	4 ·	de l'échantill	aucune tri (<0,5cm / <2cm)
Projection		Z (sol) - NGF: 51,395	XRF Tubes réa	Réf. Matériel :	Méthode d'é	chantillonnage : emporte pièce (plast truelle / pelle à main	
Pz n° :	e pour <u>échantillons tém</u> c	NS (m/sol) :	* mesure	PID de l'air ambiant au poste d'échantillonnage : . □Oui ☑Non	Conditionner	ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s	on méthanol
Remarq		n(a) 0.70 m		hanol: □Oui ☑Non e: AGROLAB voi au laboratoire: 04/08/2022	□ Conservation ☑	sac	autre:
		rés à 0,70 m				carton	
Prof.		E GÉOLOGIQUE	Venues d'eau /	Observations (aspect, couleur, odeur)	TIONS ET MI		
(m)		umidité, dalle, remblais)	humidité des sols	Corps étrangers (plastique, machefer		Analyses de terrain	N°
0.50	Sables et gra	aves gréseux	-	Brun ocre ; racines et bois		0,0	P14(0-0,7)
1 .50		rés d'ensemble de la fouille		Lithologie de la fou	uille P14		
6.50 7 7.50 8				Fouille rebouchée			
9.50							

	SINGER		Rue des co	ombattants d'Afrique du Nord - Fréj	us (83)		Annexe	
Bl	SINGER Urgeap		FICH	E D'ÉCHANTILLONNAGE DE SOLS			RSSPSE14021 CSSPSE222204	
Interven Date :	ge n°: P15 nant GINGER BURGEAI 03/08/2022 on météorologique :	F PNER Heure : Ensoleillé	Profonde	e de sondage : Pelle mécanique ur atteinte (m/sol) : 0,9	5		moyen les sous échantillons :	
	ation du sondage 001474,835	Y: 6269950		de terrain : ^{☑Oui} □Non ☑ Réf. Matériel :	Preparation □ □	de l'échantillि : homogénéisिation autre :	aucune tri (<0,5cm / <2cm)	
Projection	on: GPS	Z (sol) - NGF : 49,83	XRF Tubes réa Autre	Réf. Matériel :	Méthode d'é □	omporto pioco (piactiquo / autro)		
Pz n° : Sondag	e pour <u>échantillons tém</u>	NS (m/sol) : oins : □Oui ☑Non	Doublons	Co Cv.	Conditionne	ment d'échantillons : flacon sol brut + flaco flacon / pot sol brut s	seul (PE / verre)	
Remarq		grés à 0,9 m	Blanc mét Laboratoir Date d'en	ilialioi :		n des échantillons : glacière	autre :	
	COUP	E GÉOLOGIQUE	<u> </u>	OBSERV	ATIONS ET M			
Prof. (m)		cription numidité, dalle, remblais)	Venues d'eau / humidité des sols	Observations (aspect, couleur, odeu Corps étrangers (plastique, machefe		Analyses de terrain	N°	
0.50	Sables	et limons	-	Brun-ocre	,	0,0	P15(0-0,9)	
1.50 2 2 2 3								
3.50								
5.50	Vue	d'ensemble de la fouille		Lithologie de la fo	buille P15			
6.50								
7 =								
7.50								
8.50								
9.50								

Annexe 5. Bordereaux d'analyses des sols

Cette annexe contient 120 pages.

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466557 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P1:0-1

0,1 1 1 0 0,01 +/- 1	Selon norme lixiviation Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
0	Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
0	Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
0	Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
,01 +/- 1 ,000 ,05 ,05 ,0,1 ,001 1 ,02	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
,01 +/- 1 ,000 ,05 ,05 ,0,1 ,001 1 ,02	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
000 ,05 ,05),1 001 1	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
000 ,05 ,05),1 001 1	Selon norme lixiviation
000 ,05 ,05),1 001 1	Selon norme lixiviation
,05 ,05 ,1 ,001 1 ,02	Selon norme lixiviation
,05 ,05 ,1 ,001 1 ,02	Selon norme lixiviation
,05 0,1 0001 1 ,02	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
0,1 001 1 ,02	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
0,1 001 1 ,02	Selon norme lixiviation Selon norme lixiviation
001 1 ,02	Selon norme lixiviation
,02	
	Selon norme liviviation
10	OCIOIT HOTHIC IIXIVIALION
10	Selon norme lixiviation
,02	Selon norme lixiviation
1	Selon norme lixiviation
),1	Selon norme lixiviation
0003	Selon norme lixiviation
,05	Selon norme lixiviation
	Selon norme lixiviation
,02	Selon norme lixiviation
),1 +/- 10	Cf. NEN-ISO 10390 (sol uniquement)
000 +/- 16	conforme ISO 10694 (2008
,	1

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,7	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	17	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	83	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	19	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	24	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	76	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)			
1	1				

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde		0 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	466557	' Solide / Eluat				
Spécification des échantillons	P1 : 0-1	1				
	11.77	5 ′ 1′ ′	Limite	Incert.	8.4 771 1	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux						•
Antimoine (Sb)	mg/kg Ms	0,7	0,5	+/- 10	Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	17	1	+/- 15	Conforme	16174 à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	83		+/- 12	Conforme	16174 à EN-ISO 11885, EN
				7/- 12		16174 à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1			16174
Chrome (Cr)	mg/kg Ms	19	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	14		+/- 11	Conforme	16174 à EN-ISO 11885, EN
						16174
Plomb (Pb)	mg/kg Ms	24	,	+/- 11		à EN-ISO 11885, El 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, Et 16174
Zinc (Zn)	mg/kg Ms	76	1	+/- 22	Conforme	à EN-ISO 11885, Et 16174
Hydrocarbures Aromatiques	s Polycycliques (ISO)				
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Fluoranthène	mg/kg Ms	0,063		+/- 17	équival	ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050				ent à NF EN 16181
						ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050				
HAP (6 Borneff) - somme	mg/kg Ms	0,0630 ×)				ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,0630 x)				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,0630 ×)			equival	ent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050				ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
						ISO 22155

Composés a	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

rqués du symbole " *) ". N° échant. 466557 Solide / Eluat

Spécification des échantillons	P1 : 0-1				
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
ž COHV				'	,
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhylène Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
	mg/kg Ms	<0,10	0,1		ISO 22155
☑ Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	•		ISO 22155
	,				
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
z Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28 Fraction C28-C32 Fraction C32-C36	*) mg/kg Ms	2,7	2	+/- 21	ISO 16703
Fraction C28-C32	*) mg/kg Ms	4,7	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	2,5	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
© Sommo 6 BCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
9 PCB (118)	ma/ka Ms	-0.001	0.001		NEN-EN 16167

<u> </u>				
Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
> PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
₹ PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
% PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
© PCB (118) PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
= IPUB [133]	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
	viation			
E Analyses sur éluat après lixive L/S cumulé	ml/g	10,0	0,1	Selon norme lixiviation
Les				page 3 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466557 Solide / Eluat

Spécification des échantillons P1 : 0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	160	5	+/- 10	Selon norme lixiviation
рН		8,4	0	+/- 5	Selon norme lixiviation
Température	°C	20,6	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

,	Résidu à sec	mg/l	140	100	+/- 22	Equivalent à NF EN ISO 15216
3	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
2	Chlorures (CI)	mg/l	2,2	0,1	+/- 10	Conforme à ISO 15923-1
	Sulfates (SO4)	mg/l	19	5	+/- 10	Conforme à ISO 15923-1
É	COT	mg/l	4,4	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	18	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/l	11	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466557 Solide / Eluat

Spécification des échantillons P1 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466558 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P3:0-1

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	38,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	99	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	11		Selon norme lixiviation
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	0	0,62	0		
Prétraitement de l'échantillon		•	·			Conforme à NEN-EN 1617
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	90,8	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	S					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		10	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		43	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,10	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		6,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		100	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0,05	0,02		Selon norme lixiviation
Analyses Physico-chimiques	5					
pH-H2O		0	8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		13000	1000	+/- 16	conforme ISO 10694 (2008

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

•	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	7,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	65	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	19	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
A a á ma mhatal da ma	ma/lea Ma	0.050	0.05		équivolent à NE EN 16101

DADDODT DIAMAL VOCC					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES	44000	•	5			
n° Cde		0 BC22-4775	Projet: C	SSPSE222	2204 Fréjus	
N° échant.	466558	Solide / Eluat				
Spécification des échantillons	P3 : 0-1	1				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux					,	(1.1.1.1.1)
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	7,3	1	+/- 15	Conforme	16174 à à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	65		+/- 12	Conforme	16174 à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1	17 12		16174 à EN-ISO 11885, EN
			-			16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	19	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	14	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, El
Plomb (Pb)	mg/kg Ms	12	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, Et
Sélénium (Se)	mg/kg Ms	<1,0			Conforme	16174 à EN-ISO 11885, EN
	mg/kg Ms	46	1	+/- 22		16174 à EN-ISO 11885, EN
Zinc (Zn)	IIIg/kg IVIS	40	I	+/- 22	Comonne	16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050			•	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	-,,,,			ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Composés aromatiques	mg/kg Wis	II.u.			cquivai	CIRCUITA EIT TOTO
Benzène	mg/kg Ms	∠0.0E0	0.05			ISO 22155
		<0,050				ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
<u>Ethylbenzène</u>	mg/kg Ms	<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10				ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155

Composés a	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

qués du symbole " *) ". n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466558 Solide / Eluat

Spécification des échantillons	P3 : 0-1		I See Stee	la sant	
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
COHV					
Chlorure de Vinyle	mg/kg Ms	<0.02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
2 1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
g 1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
	mg/kg Ms	<0,10	0,1		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,000		ISO 22155
					·
Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6 Fraction C5-C10 Fraction > 00.040	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10 Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
z Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C16-C20 Fraction C30-C34	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	3,7	2	+/- 21	ISO 16703
Fraction C28-C32	*) mg/kg Ms	5,0	2	+/- 21	ISO 16703
ଟ୍ଲ Fraction C32-C36	*) mg/kg Ms	4,2	2	+/- 21	ISO 16703
Fraction C24-C28 Fraction C28-C32 Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					·
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101)	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
0 (111)		30,001	5,501	+	11214 214 10107

i diyamarabiphanyida				
Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Analyses sur éluat après lixiv	riation			
L/S cumulé	ml/g	10,0	0,1	Selon norme lixiviation
				page 3 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466558 Solide / Eluat

Spécification des échantillons P3 : 0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	130	5	+/- 10	Selon norme lixiviation
pH		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,3	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

2	Résidu à sec	mg/l	100	100	+/- 22	Equivalent à NF EN ISO 15216
υ	Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פ	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,0	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	10	5	+/- 10	Conforme à ISO 15923-1
=	COT	mg/l	4,3	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
- Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	10	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	5,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466558 Solide / Eluat

Spécification des échantillons P3 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466559 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P3:1-2

+/- 1	Selon norme lixiviation Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16173 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	Selon norme lixiviation Conforme à NEN-EN 1617: méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
1	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1	Selon norme lixiviation
1	Selon norme lixiviation
1	Selon norme lixiviation
1	Selon norme lixiviation
1	Selon norme lixiviation
1	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
1	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
2	Selon norme lixiviation Selon norme lixiviation
2	Selon norme lixiviation
	Colon norma liviviation
,	Selon norme lixiviation
	Selon norme lixiviation
	Selon norme lixiviation
	Selon norme lixiviation
3	Selon norme lixiviation
;	Selon norme lixiviation
	Selon norme lixiviation
;	Selon norme lixiviation
;	Selon norme lixiviation
	Selon norme lixiviation
!	Selon norme lixiviation
·	
+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
) +/- 16	conforme ISO 10694 (2008
5 5 5 5 1	03 5 5 5 5 5 5 5 5 7 7

Kamer van Koophandel Nr. 08110898 VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,8	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	30	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	110	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	30	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	100	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

DADDODT DIAMAL VOCC					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES	44000	40 DOOG 4775	David C	000000000	1004 F: // -	
n° Cde		10 BC22-4775	Projet: C	SSPSE222	204 Frejus	
N° échant.	466559	9 Solide / Eluat				
Spécification des échantillons	P3 :1-2	2				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657 (déchets)
Métaux						(decricis)
Antimoine (Sb)	mg/kg Ms	0,8	0,5	+/- 10	Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	30	1	+/- 15	Conforme	16174 à à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	110	1	+/- 12		16174 e à EN-ISO 11885, EN
						16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21		è à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 è à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme	16174 e à EN-ISO 11885, EN
Plomb (Pb)	mg/kg Ms	30	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Sélénium (Se)	mg/kg Ms	<1,0	1	., .,		16174 e à EN-ISO 11885, EN
		•		/ 00		16174 e à EN-ISO 11885, EN
Zinc (Zn)	mg/kg Ms	100	1	+/- 22	Conforme	16174
Hydrocarbures Aromatiques		(ISO)				
Naphtalène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	0,064		+/- 20		ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Fluoranthène	mg/kg Ms	0,19		+/- 17		ent à NF EN 16181
Pyrène	mg/kg Ms	0,18	0,05	+/- 19		ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,084	0,05	+/- 14	équival	ent à NF EN 16181
Chrysène	mg/kg Ms	0,10	0,05	+/- 14	équival	ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,091	0,05	+/- 12	équival	ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,18	0,05	+/- 14	équival	ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,11		+/- 14		ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,21	0,05	+/- 17		ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,781 ^{x)}	0,00	1, 11		ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,938 ×)				ent à NF EN 16181
	mg/kg Ms	1,21 ×)				ent à NF EN 16181
HAP (EPA) - somme Composés aromatiques	ilig/kg ivis	1,21			equivai	enta NF LN 10101
	ma/ka Ma	-0.0E0	0.05			100 22455
Benzène	mg/kg Ms	<0,050				ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
<u>Ethylbenzène</u>	mg/kg Ms	<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10				ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	1	1	ISO 22155

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

page 2 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

					Date	17.08.20
DADBODT DIAMAI VECE					N° Client	350065
RAPPORT D'ANALYSES	4400040					
n° Cde		BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	466559 S	olide / Eluat				
Spécification des échantillons	P3 :1-2					
·			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	;
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV					-	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	80,8	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	3,9	2	+/- 21		ISO 16703
Fraction C20-C24	*) mg/kg Ms	7,3	2	+/- 21		ISO 16703
Fraction C24-C28	*) mg/kg Ms	13,6	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	19	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	21,3	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	12,4	2	+/- 21		ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Salc	n norme lixiviation

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	80,8	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	3,9	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	7,3	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	13,6	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	19	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	21,3	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	12,4	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
	Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153)	Somme 7 PCB (Ballschmiter) mg/kg Ms PCB (28) mg/kg Ms PCB (52) mg/kg Ms PCB (101) mg/kg Ms PCB (118) mg/kg Ms PCB (138) mg/kg Ms PCB (153) mg/kg Ms	Somme 7 PCB (Ballschmiter) mg/kg Ms n.d. PCB (28) mg/kg Ms <0,001 PCB (52) mg/kg Ms <0,001 PCB (101) mg/kg Ms <0,001 PCB (118) mg/kg Ms <0,001 PCB (138) mg/kg Ms <0,001 PCB (153) mg/kg Ms <0,001	Somme 7 PCB (Ballschmiter) mg/kg Ms n.d. PCB (28) mg/kg Ms <0,001 0,001 PCB (52) mg/kg Ms <0,001 0,001 PCB (101) mg/kg Ms <0,001 0,001 PCB (118) mg/kg Ms <0,001 0,001 PCB (138) mg/kg Ms <0,001 0,001 PCB (153) mg/kg Ms <0,001 0,001	Somme 7 PCB (Ballschmiter) mg/kg Ms n.d. PCB (28) mg/kg Ms <0,001 0,001 PCB (52) mg/kg Ms <0,001 0,001 PCB (101) mg/kg Ms <0,001 0,001 PCB (118) mg/kg Ms <0,001 0,001 PCB (138) mg/kg Ms <0,001 0,001 PCB (153) mg/kg Ms <0,001 0,001

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466559 Solide / Eluat

Spécification des échantillons P3 :1-2

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	160	5	+/- 10	Selon norme lixiviation
рН		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,0	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	100	100	+/- 22	Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פֿ	Indice phénol	mg/l <	0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,8	0,1	+/- 10	Conforme à ISO 15923-1
ξ	Sulfates (SO4)	mg/l	11	5	+/- 10	Conforme à ISO 15923-1
₹	COT	mg/l	6,6	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
- Arsenic (As)	μg/l	6,5	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	24	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	18	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466559 Solide / Eluat

Spécification des échantillons P3 :1-2

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

accrédités et/ou externalisés sont marqués du symbole " *) ". N° échant. 466560 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P13:0-1

Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) ') mg/kg Ms 1000 Antimoine cumulé (var. L/S) ') mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ') mg/kg Ms 0,11 Baryum cumulé (var. L/S) ') mg/kg Ms 0 - 0,1	0,1 1 1 0 0,01 1000 0,05 0,05	+/- 1	Selon norme lixiviation Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
Masse brute Mh pour lixiviation ') g ° 99 Lixiviation (EN 12457-2) ° ') ml 900 Prétraitement des échantillons Masse échantillon total inférieure à 2 kg kg ° 0,60 Prétraitement de l'échantillon ° Broyeur à mâchoires ° 92,2 Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) ') mg/kg Ms 1000 Antimoine cumulé (var. L/S) ') mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ') mg/kg Ms 0,11 Baryum cumulé (var. L/S) ') mg/kg Ms 0 - 0,1	1 0 0,01 1000 0,05 0,05	+/- 1	Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
Lixiviation (EN 12457-2) Volume de lixiviant L ajouté pour l'extraction ') ml Prétraitement des échantillons Masse échantillon total inférieure à 2 kg kg ° 0,60 Prétraitement de l'échantillon ° Broyeur à mâchoires Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) ') mg/kg Ms 1000 Antimoine cumulé (var. L/S) ') mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ') mg/kg Ms 0,11 Baryum cumulé (var. L/S) ') mg/kg Ms 0 - 0,1	0 0,01 1000 0,05 0,05	+/- 1	NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Volume de lixiviant L ajouté pour l'extraction *) ml 900 Prétraitement des échantillons Masse échantillon total inférieure à 2 kg kg ° 0,60 Prétraitement de l'échantillon ° Broyeur à mâchoires ° Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) *) mg/kg Ms 1000 Antimoine cumulé (var. L/S) *) mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) *) mg/kg Ms 0,11 Baryum cumulé (var. L/S) *) mg/kg Ms 0 - 0,1	0 0,01 1000 0,05 0,05	+/- 1	Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Prétraitement des échantillons Masse échantillon total inférieure à 2 kg kg ° 0,60 Prétraitement de l'échantillon ° Broyeur à mâchoires ° Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) ° mg/kg Ms 1000 ° Antimoine cumulé (var. L/S) ° mg/kg Ms 0 - 0,05 ° Arsenic cumulé (var. L/S) ° mg/kg Ms 0,11 ° Baryum cumulé (var. L/S) ° mg/kg Ms 0 - 0,1	0 0,01 1000 0,05 0,05	+/- 1	Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Masse échantillon total inférieure à 2 kg kg ° 0,60 Prétraitement de l'échantillon ° Broyeur à mâchoires ° Matière sèche % ° Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) °) mg/kg Ms 1000 Antimoine cumulé (var. L/S) °) mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) °) mg/kg Ms 0,11 Baryum cumulé (var. L/S) °) mg/kg Ms 0 - 0,1	0,01 1000 0,05 0,05	+/- 1	méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Prétraitement de l'échantillon ° Broyeur à mâchoires ° Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) °) mg/kg Ms 1000 Antimoine cumulé (var. L/S) °) mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) °) mg/kg Ms 0,11 Baryum cumulé (var. L/S) °) mg/kg Ms 0 - 0,1	0,01 1000 0,05 0,05	+/- 1	méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Broyeur à mâchoires °	1000 0,05 0,05	+/- 1	méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
Matière sèche % ° 92,2 Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) ") mg/kg Ms 1000 Antimoine cumulé (var. L/S) ") mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ") mg/kg Ms 0,11 Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1	1000 0,05 0,05	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) *) mg/kg Ms 1000 Antimoine cumulé (var. L/S) *) mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) *) mg/kg Ms 0,11 Baryum cumulé (var. L/S) *) mg/kg Ms 0 - 0,1	1000 0,05 0,05	+/- 1	Selon norme lixiviation
Fraction soluble cumulé (var. L/S) ") mg/kg Ms 1000 Antimoine cumulé (var. L/S) ") mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ") mg/kg Ms 0,11 Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1	0,05 0,05		
Fraction soluble cumulé (var. L/S) ") mg/kg Ms 1000 Antimoine cumulé (var. L/S) ") mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ") mg/kg Ms 0,11 Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1	0,05 0,05		
Antimoine cumulé (var. L/S) ") mg/kg Ms 0 - 0,05 Arsenic cumulé (var. L/S) ") mg/kg Ms 0,11 Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1	0,05 0,05		
Arsenic cumulé (var. L/S) ") mg/kg Ms 0,11 Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S) ") mg/kg Ms 0 - 0,1			Selon norme lixiviation
	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S) "mg/kg Ms 0 - 0,001 0	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S) *) mg/kg Ms 13	1		Selon norme lixiviation
Chrome cumulé (var. L/S) mg/kg Ms 0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S) "mg/kg Ms 34	10		Selon norme lixiviation
Cuivre cumulé (var. L/S) "mg/kg Ms 0,12	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S) *) mg/kg Ms 17	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S) *) mg/kg Ms 0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S) *) mg/kg Ms 0 - 0,0003 0	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S) ^{*)} mg/kg Ms 0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S) mg/kg Ms 0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S) "mg/kg Ms 0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S) ") mg/kg Ms 0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S) ") mg/kg Ms 77	50		Selon norme lixiviation
Zinc cumulé (var. L/S) mg/kg Ms 0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques			
pH-H2O ° 8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total mg/kg Ms 9400	1000	+/- 16	conforme ISO 10694 (2008

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde	118231	0 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.		Solide / Eluat	•		•	
Spécification des échantillons	P13 : 0-					
opcomodion des conantinons	1 10.0	•	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657
						(déchets)
Métaux	4 84				0	\$ FN 100 44005 FN
Antimoine (Sb)	mg/kg Ms	0,9	0,5	+/- 10	Conforme	à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme	à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	110	1	+/- 12	Conforme	à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, EN
, ,						16174
Chrome (Cr)	mg/kg Ms	30	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	21	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, EN
, ,						16174 à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	22	0,5	+/- 11		16174
Plomb (Pb)	mg/kg Ms	30	0,5	+/- 11	Conforme	à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
Zinc (Zn)	mg/kg Ms	100	1	+/- 22	Conforme	16174 à EN-ISO 11885, EN
Zilic (Zil)	ing/kg wo	100	'	T/- ZZ		16174
Hydrocarbures Aromatiques		SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		· · ·	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
	ı	70,000	5,50			ISO 22155

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

•					
וַ	Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ī	Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ë	Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
<u>0</u>	Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Se	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
es	Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ed	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
3	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ä	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
>	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
D >	HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
إ	Somme HAP (VROM)	mg/kg Ms	n.d.	·	équivalent à NF EN 16181
 	HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

page 2 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

RAPPORT D'ANALYSES					Date N° Client	17.08.2022 35006542
	4400	040 5000 4775		00000000	2004 5 ()	
n° Cde		310 BC22-4775	Projet: C	SSPSE222	2204 Frejus	
N° échant.	4665	60 Solide / Eluat				
n° Cde N° échant. Spécification des échantillons	P13 :	: 0-1				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.			19	SO 22155
BTEX total	*) mg/kg Ms	n.d.				SO 22155
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane Trichlorométhane Tétrachlorométhane Tétrachloroéthylène 1,1,1-Trichloroéthylène 1,1,2-Trichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthene 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylène	1 3 3 - 1					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		10	SO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02			SO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			SO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			SO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			SO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			SO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			SO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			SO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			SO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			SO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			SO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	-,			SO 22155
					<u> </u>	
Fraction C5-C10 Fraction > C6-C8	mg/kg Ms	<0,20	0,2		conforme à	NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4			NEN-EN-ISO 16558-1
	mg/kg Ms	<0,40 x)	0,4			NEN-EN-ISO 16558-1
Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10 Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C12	mg/kg Ms	<0,20	0,2		conforme à	NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à	NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à	NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à	NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		15	SO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			SO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		18	SO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		18	SO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			SO 16703
Fraction C24-C28	*) mg/kg Ms	2,6	2	+/- 21	18	SO 16703
Fraction C28-C32	*) mg/kg Ms	4,2	2	+/- 21	19	SO 16703
Fraction C32-C36	*) mg/kg Ms	2,6	2	+/- 21	18	SO 16703
Fraction C16-C20 Fraction C20-C24 Fraction C24-C28 Fraction C28-C32 Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	<2,0	2		18	SO 16703
Polychlorobiphényles						
Commo C DCD	mg/kg Ms	n.d.			NEI	N-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				N-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			N-EN 16167
Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEI	N-EN 16167
PCB (180)	ma/ka Ms	<0.001	0.001			N-EN 16167

т.	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Vest	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
-	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ΓĀ	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
par	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
sés	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
réalisés	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
_	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ètres	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
amè	Analyses sur éluat après lixivia	ation			
bar	L/S cumulé	ml/g	10,0	0,1	Selon norme lixiviation
Les					page 3 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466560 Solide / Eluat

Spécification des échantillons P13 : 0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	120	5	+/- 10	Selon norme lixiviation
pH		8,4	0	+/- 5	Selon norme lixiviation
Température	°C	20,3	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	100	100	+/- 22	Equivalent à NF EN ISO 15216
201	Fluorures (F)	mg/l	1,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l <	0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,3	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	7,7	5	+/- 10	Conforme à ISO 15923-1
≦	COT	mg/l	3,4	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
- Arsenic (As)	μg/l	11	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	12	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5
TESTING
RVA L 005

IC-13-18976418-FR-P19

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466560 Solide / Eluat

Spécification des échantillons P13 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466561 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P12:0-1

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	29,7	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	96	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	on *) ml		900	1		Selon norme lixiviation
Prétraitement des échantille	ons					
Masse échantillon total inférieure à 2 kg	kg	0	0,63	0		
Prétraitement de l'échantillon	-	0				Conforme à NEN-EN 1617
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	94,3	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solubl	es					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1400	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,10	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		29	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		31	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,07	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		8,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		140	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es					
pH-H2O		٥	8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		8200	1000	+/- 16	conforme ISO 10694 (2008

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Unité	Résultat	Limite Quant.	ncert. Résultat %	Méthode
0				NF-EN 16174; NF EN 13657 (déchets)
mg/kg Ms	0,8	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	15	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	79	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	19	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	11	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
mg/kg Ms	78	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
	mg/kg Ms	mg/kg Ms	Unité Résultat Quant. mg/kg Ms 0,8 0,5 mg/kg Ms 15 1 mg/kg Ms 79 1 mg/kg Ms 40,1 0,1 mg/kg Ms 19 0,2 mg/kg Ms 11 0,2 mg/kg Ms <0,05	mg/kg Ms mg/kg Ms 15 1 +/- 10 mg/kg Ms 79 1 +/- 12 mg/kg Ms 79 1 -/- 12 mg/kg Ms 19 0,2 +/- 12 mg/kg Ms 11 0,2 +/- 20 mg/kg Ms <0,05 0,05 mg/kg Ms <1,0 1 mg/kg Ms 20 0,5 +/- 11 mg/kg Ms mg/kg Ms 20 0,5 +/- 11 mg/kg Ms

Hydrocarbures	Aromatiques	Polycycliques	(ISO)
nvuiocaibules	Aromanuues	Polycycliques	แอบา

DADDODT DIAMAI VEES					Date N° Client	17.08.202 350065
RAPPORT D'ANALYSES	44000	10 DOOG 1775	Daniati C	NOODOE000	0004 Ending	
n° Cde		10 BC22-4775	Projet: C	,55P5E222	204 Frejus	
N° échant.		1 Solide / Eluat				
Spécification des échantillons	P12 : 0)-1				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657 (déchets)
Métaux					1	(#3011030)
Antimoine (Sb)	mg/kg Ms	0,8	0,5	+/- 10	Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	15	1	+/- 15	Conforme	16174 à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	79	1	+/- 12	Conforme	16174 à EN-ISO 11885, EN
	mg/kg Ms	<0,1	0,1	17 12		16174 à EN-ISO 11885, EN
Cadmium (Cd)						16174
Chrome (Cr)	mg/kg Ms	19	0,2	+/- 12		à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	11	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, El
Zinc (Zn)	mg/kg Ms	78	1	+/- 22	Conforme	16174 à EN-ISO 11885, El
			'	T/- ZZ		16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050				ent à NF EN 16181
<u>Acénaphtène</u>	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Composés aromatiques					1 .	
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050				SO 22155
Ethylbenzène	mg/kg Ms	<0,050		+		SO 22155
-						
m,p-Xylène	mg/kg Ms	<0,10				SO 22155
o-Xylène	mg/kg Ms	<0,050		+		SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155

Com	nosés	aromatiques

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.20
RAPPORT D'ANALYSES					N° Client	350065
	4400040	2000 4775	D==:=4: 0	00000000	0004 Faithe	
n° Cde		BC22-4775	Projet: C	.SSPSE222	2204 Frejus	
N° échant.		olide / Eluat				
Spécification des échantillons	P12 : 0-1					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4			à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	3,0	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	5,4	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	3,7	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			EN-EN 16167
Analyses sur éluat après lixiv		· -)	,		, .,	
L/S cumulé	ml/g	10,0	0,1		Sala	n norme lixiviation
L/ O CUITICIO	1111/9	10,0	υ, ι		Jeic	omo intividuoti

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	mg/kg Ms	3,0	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	5,4	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	3,7	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

ב	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
ה מ	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
_	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ζ.	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
2	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
מ	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ğ	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
_	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
iś	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lix	iviation
------------------------------	----------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

17.08.2022 Date N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466561 Solide / Eluat

Spécification des échantillons P12:0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	120	5	+/- 10	Selon norme lixiviation
pH		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,5	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	140	100	+/- 22	Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פֿ	Indice phénol	mg/l <	0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	2,9	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	14	5	+/- 10	Conforme à ISO 15923-1
≝	COT	mg/l	3,1	1	+/- 10	conforme EN 16192

	sur		

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	10	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	7,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466561 Solide / Eluat

Spécification des échantillons P12:0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

es paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466562 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P15:0-0,9

פונים		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
<u></u>	Lixiviation					
5	Fraction >4mm (EN12457-2)	%	° 27,1	0,1		Selon norme lixiviation
Ď	Masse brute Mh pour lixiviation *)	g	° 96	1		Selon norme lixiviation
2	Lixiviation (EN 12457-2)		0			NF EN 12457-2
) כ	Volume de lixiviant L ajouté pour l'extraction *)	ml	900	1		Selon norme lixiviation
-	Prétraitement des échantillons					
Ĭ.	Masse échantillon total inférieure à 2 kg	kg	° 0,64	0		
Š	Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
-	Broyeur à mâchoires		0			méthode interne
2	Matière sèche	%	° 93,6	0,01	+/- 1	NEN-EN 15934 ; EN12880
Š	Calcul des Fractions solubles					
_	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
ī	Antimoine cumulé (var. L/S) *)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
=	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
2	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
<u> </u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0,002	0,001		Selon norme lixiviation
2	Chlorures cumulé (var. L/S)	mg/kg Ms	17	1		Selon norme lixiviation
2	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Ĕ	COT cumulé (var. L/S)	mg/kg Ms	27	10		Selon norme lixiviation
פֿב	Cuivre cumulé (var. L/S)	mg/kg Ms	0,04	0,02		Selon norme lixiviation
3	Fluorures cumulé (var. L/S) *)	mg/kg Ms	5,0	1		Selon norme lixiviation
Ĭ	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
0	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
2	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Į,	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
>	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
ļ	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
g	Sulfates cumulé (var. L/S)	ilig/kg ivis	0 - 50	50		Selon norme lixiviation
0	Zinc cumulé (var. L/S)	mg/kg Ms	0,04	0,02		Selon norme lixiviation
2	Analyses Physico-chimiques					
ה מ	pH-H2O		° 7,9	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
Ď	007.0 1 0 : 7.1	see or /lear NAs	6400	4000	. / 40	

8100

1000

+/- 16

Prétraitement pour analyses des métaux

conforme ISO 10694 (2008)

COT Carbone Organique Total

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	•				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	55	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,9	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	9,4	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	56	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures A	Aromatiques	Polycycliques	(ISO)
nvurocarbures /	410manuues	Polycycliques	แอบา

					Date	17.08.202
					N° Client	350065
RAPPORT D'ANALYSES						
n° Cde	118231	0 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	466562	Solide / Eluat				
Spécification des échantillons	P15 : 0	-0.9				
		-,-	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657
Métaux						(déchets)
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conform	e à EN-ISO 11885, E
		12		+/- 15	Conform	16174 e à EN-ISO 11885, El
Arsenic (As)	mg/kg Ms		1			16174
Baryum (Ba)	mg/kg Ms	55	1	+/- 12	Conform	e à EN-ISO 11885, El 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conform	e à EN-ISO 11885, EI 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conform	e à EN-ISO 11885, El
Cuivre (Cu)	mg/kg Ms	7,9	0,2	+/- 20	Conform	<u>16174</u> e à EN-ISO 11885, EI
` '		-		T/- 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05			ne à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conform	e à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	9,4	0,5	+/- 11	Conform	e à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	16	0,5	+/- 11	Conform	16174 e à EN-ISO 11885, E
Sélénium (Se)	mg/kg Ms	<1,0	1		Conform	16174 e à EN-ISO 11885, E
, ,						16174
Zinc (Zn)	mg/kg Ms	56	1	+/- 22	Conform	e à EN-ISO 11885, El 16174
Hydrocarbures Aromatiques	Polycycliques (I	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		équiva	lent à NF EN 1618'
Acénaphtylène	mg/kg Ms	<0,050	0,05		équiva	lent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équiva	lent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équiva	lent à NF EN 1618'
Phénanthrène	mg/kg Ms	0,21	0,05	+/- 20	équiva	lent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Fluoranthène	mg/kg Ms	0,28	0,05	+/- 17		lent à NF EN 1618
Pyrène	mg/kg Ms	0,27	0,05	+/- 19		lent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,12	0,05	+/- 14		lent à NF EN 1618
Chrysène	mg/kg Ms	0,18	0,05	+/- 14		lent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,12	0,05	+/- 12		lent à NF EN 16181
. ,				T/- 12		lent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	. / 44		
Benzo(a)pyrène	mg/kg Ms	0,16	0,05	+/- 14		lent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	0,093	0,05	+/- 14		lent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,11	0,05	+/- 17		lent à NF EN 1618 ²
HAP (6 Borneff) - somme	mg/kg Ms	0,763 x)				lent à NF EN 1618 ²
Somme HAP (VROM)	mg/kg Ms	1,15 ^{x)}			équiva	lent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	1,54 ^{x)}			équiva	lent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
				+		
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.20
RAPPORT D'ANALYSES					N° Client	350065
	44000	I O DC00 4775	Droint: C	·ceneroo	204 Fráina	
n° Cde		10 BC22-4775	Projet: C	33P3E222	204 Frejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P15 : 0	-0,9				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	9
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)				·		
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	e à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1			e à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme	e à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	3,4	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	2,4	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles				·		
Somme 6 PCB	mg/kg Ms	n.d.			l N	IEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				IEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
Analyses sur éluat après lixiv		40,001	2,001	1		=
L/S cumulé	ml/g	10,0	Λ 1		Calc	on norme lixiviation
L/O Carriale	IIII/g	10,0	0,1		Seit	AT TIOTHIE IIXIVIALION

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0.20	0.2	conforme à NEN-EN-ISO 16558-1

U)	i raction aromatique >00 00	g/.kgo	~0,20	0,2		
z	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
Ф		mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
Ē	Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms	<20,0	20		ISO 16703
2	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
		mg/kg Ms	<4,0	4		ISO 16703
ᅙ	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
S	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
ité Aité		mg/kg Ms	<2,0	2		ISO 16703
\tilde{c}		// 1.4		_		100 10-00

,	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
3	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
_	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
2	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
2	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ś	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
2	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
5	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

1	Analyses	sur	éluat	après	lixiviation

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466562 Solide / Eluat

Spécification des échantillons P15 : 0-0,9

	Unité	Résultat Quar		Méthode
Conductivité électrique	μS/cm	63,7 5	+/- 10	Selon norme lixiviation
pH		8,0 0	+/- 5	Selon norme lixiviation
Température	°C	20,2 0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,7	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
СОТ	mg/l	2,7	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
- Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	0,2	0,1	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	4,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

es paramètres réalisés par AL-West

B

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466562 Solide / Eluat

Spécification des échantillons P15 : 0-0,9

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466563 Solide / Eluat

Date de validation **08.08.2022**

Prélèvement **05.08.2022 14:46**

Prélèvement par: Client
Spécification des échantillons P14 : 0-0,7

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 35,6	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *) g	° 94	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *) ml	900	1		Selon norme lixiviation
Prétraitement des échantillons	3				
Masse échantillon total inférieure à 2 kg	kg	° 0,64	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 95,9	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles					
Fraction soluble cumulé (var. L/S) *	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	12	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	27	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,04	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Odilates cultitule (val. L/O)	mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,03	0,02		Selon norme lixiviation
Analyses Physico-chimiques					
pH-H2O		° 8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol

7000

1000

+/- 16

COT Carbone Organique Total mg/kg Ms

Prétraitement pour analyses des métaux

uniquement)

conforme ISO 10694 (2008)

es paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	59	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	9,9	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	23	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	66	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
					(

DARRORT DIAMAL VOCO					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde		310 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	4665	63 Solide / Eluat				
Spécification des échantillons	P14 :	: 0-0,7				
•		•	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale		0			NF-EN	16174; NF EN 13657
Métaux						(déchets)
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	e à EN-ISO 11885, EN
				/ 45		16174
Arsenic (As)	mg/kg Ms	11	1	+/- 15		è à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	59	1	+/- 12	Conforme	è à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, EN
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme	16174 e à EN-ISO 11885, EN
	mg/kg Ms			+/- 20	Conforme	16174 e à EN-ISO 11885, EN
Cuivre (Cu)		9,9		+/- 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme	e à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	23	0,5	+/- 11	Conforme	à EN-ISO 11885, Et 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, El
Zinc (Zn)	mg/kg Ms	66	1	+/- 22	Conforme	16174 e à EN-ISO 11885, EI
Hydrocarbures Aromatiques	Polycycliques	: (ISO)				16174
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050			·	ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050				ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
			0,03			ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			equival	ent à NF EN 16181
Composés aromatiques			0.05		T	100 00455
Benzène	mg/kg Ms	<0,050				ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
Ethylbenzène	mg/kg Ms	<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
	mg/kg Ms	<0,10				ISO 22155

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.202
RAPPORT D'ANALYSES					N° Client	350065
	44000	10 DOOD 4775	D:-4- O	00000000	0004 Ending	
n° Cde		10 BC22-4775	Projet: C	55P5E222	2204 Frejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P14 : 0)-0,7				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	•
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms mg/kg Ms	<0,03	0,05			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
	gg					100 22100
Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	<u></u>			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4			à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	2,8	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	3,4	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv				1 1	I	
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation

3	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
j	Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
•	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
1	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
-	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
7	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
2	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
2	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
5	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
5	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
į	Fraction C24-C28	mg/kg Ms	2,8	2	+/- 21	ISO 16703
5	Fraction C28-C32	mg/kg Ms	3,4	2	+/- 21	ISO 16703
2	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
=	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

-	. c., cc. cpc, .cc				
ם	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Se S	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
-	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
7	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
g	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Ses	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ä	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
<u>e</u>	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ĕ	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur é	luat après lixiviation
----------------	------------------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466563 Solide / Eluat

Spécification des échantillons P14 : 0-0,7

	Unité	'-	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	110	5	+/- 10	Selon norme lixiviation
pH		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,4	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,2	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
СОТ	mg/l	2,7	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,9	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466563 Solide / Eluat

Spécification des échantillons P14 : 0-0,7

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466564 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P7:0-1

1 +/- 1 100 5 101 20 10 20 10 11 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18	Selon norme lixiviation Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1 +/- 1 00 5 1 01 2 0	Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16173 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation Selon norme lixiviation
1 +/- 1 00 5 5 1 01	NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1 +/- 1 00 5 5 1 01	Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
1 +/- 1 00 5 5 1 01	Conforme à NEN-EN 1617 méthode interne NEN-EN 15934 ; EN1288 Selon norme lixiviation
1 +/- 1 00 5 1 1 2	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
1 +/- 1 00 5 1 1 2	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
00 55 5 1 1 1 1 1 1 1	méthode interne NEN-EN 15934; EN1288 Selon norme lixiviation
00 55 5 1 1 1 1 1 1 1	Selon norme lixiviation
00 55 5 1 1 1 1 1 1 1	Selon norme lixiviation
5 5 1 01 2	Selon norme lixiviation
5 5 1 01 2	Selon norme lixiviation
5 5 1 01 2	Selon norme lixiviation
5 1 1 1 1 1 1 1 1 1	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
2	Selon norme lixiviation Selon norme lixiviation Selon norme lixiviation
2	Selon norme lixiviation Selon norme lixiviation
2	Selon norme lixiviation
)	
)	0.1 ".1.1.1
	Selon norme lixiviation
2	Selon norme lixiviation
	Selon norme lixiviation
1	Selon norme lixiviation
03	Selon norme lixiviation
5	Selon norme lixiviation
	Selon norme lixiviation
5	Selon norme lixiviation
5	Selon norme lixiviation
	Selon norme lixiviation
2	Selon norme lixiviation
+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
00 +/- 16	conforme ISO 10694 (2008
	1

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	1,2	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	110	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	27	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	31	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	79	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde	118231	0 BC22-4775	Proiet: C	SSPSE222	204 Fréjus	
N° échant.		Solide / Eluat	,		,	
Spécification des échantillons	P7 : 0-1					
Specification des echantifions	F7.0-1		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN 1	6174; NF EN 13657
						(déchets)
Métaux		4.0	0.5	/ 10	Conforms	à EN 100 44005 EN
Antimoine (Sb)	mg/kg Ms	1,2	0,5	+/- 10	Conforme	à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme	à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	110	1	+/- 12	Conforme	à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	<u>16174</u> à EN-ISO 11885, EN
Chrome (Cr)	mg/kg Ms	27	0,2	+/- 12	Conforme	<u>16174</u> à EN-ISO 11885, EN
						16174 à EN-ISO 11885, EN
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05			à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, El 16174
Nickel (Ni)	mg/kg Ms	20	0,5	+/- 11	Conforme	à EN-ISO 11885, EI 16174
Plomb (Pb)	mg/kg Ms	31	0,5	+/- 11	Conforme	à EN-ISO 11885, El
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	<u>16174</u> à EN-ISO 11885, EI
Zinc (Zn)	mg/kg Ms	79	1	+/- 22	Conforme	<u>16174</u> à EN-ISO 11885, El
			'	T/- ZZ		16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050	0,05			nt à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05			nt à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05			nt à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05			nt à NF EN 16181
Phénanthrène	mg/kg Ms	0,55	0,05	+/- 20		nt à NF EN 16181
Anthracène	mg/kg Ms	0,10	0,05	+/- 24	équivale	nt à NF EN 1618'
Fluoranthène	mg/kg Ms	0,63	0,05	+/- 17		nt à NF EN 16181
Pyrène	mg/kg Ms	0,53	0,05	+/- 19	équivale	nt à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,25	0,05	+/- 14	équivale	nt à NF EN 16181
Chrysène	mg/kg Ms	0,27	0,05	+/- 14	équivale	nt à NF EN 1618'
Benzo(b)fluoranthène	mg/kg Ms	0,28	0,05	+/- 12	équivale	nt à NF EN 1618'
Benzo(k)fluoranthène	mg/kg Ms	0,13	0,05	+/- 14	équivale	nt à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,30	0,05	+/- 14		nt à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			nt à NF EN 1618°
Benzo(g,h,i)pérylène	mg/kg Ms	0,17	0,05	+/- 14		nt à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,22	0,05	+/- 17		nt à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	1,73	0,00	., .,		nt à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	2,62 ×)				nt à NF EN 1618
		3,43 ×)				nt à NF EN 1618
HAP (EPA) - somme Composés aromatiques	mg/kg Ms	ა,4ა "			equivale	III a INI EIN 1016
	ma/ka Ma	.0.050	0.05		14	20 22455
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05		1	SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155

ĸ	oomposes aromanques				
1	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
פ	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ŭ	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
5	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

RvA L 005

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

RAPPORT
n° Cde
N° échant. 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

466564 Solide / Eluat

		Johac / Llaat			
Spécification des échantillons	P7 : 0-1				
Sont	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes BTEX total COHV	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Chlorure de Vinyle Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
g Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
g 1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
	mg/kg Ms	<0,10	0,1		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020		ISO 22155
	, , ,				
Fraction aliphatique >C6-C8	mg/kg Ms	₄ 0.20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<0,20 <1,0 ^{x)}	<u>0,∠</u> 1		conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-
Fraction co-c 10	mg/kg Ms	<0,40	0,4		conforme à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
z Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
<u>-</u>	mg/kg Ms			./ 21	
Hydrocarbures totaux C10-C40 Fraction C10-C12	*) mg/kg Ms	40,8 <4,0	20 4	+/- 21	ISO 16703 ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0 <4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	4,7	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	5,7	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	8,0	2	+/- 21	ISO 16703
Fraction C24-C26 Fraction C28-C32	*) mg/kg Ms	9,1	2	+/- 21	ISO 16703
I Taction G20-G32	*) mg/kg Ms	6,6	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	3,6	2	+/- 21	ISO 16703
0	ing/ng ivis	3,0		T/- Z I	130 10703
Commo C DCD	mg/kg Ms	ьч			NEN-EN 16167
Somme 7 DCB (Pollochmiter)	mg/kg Ms	n.d.			
Somme 7 PCB (Ballschmiter) PCB (28)	mg/kg Ms	n.d. <0,001	0,001		NEN-EN 16167 NEN-EN 16167
PCB (28) PCB (52)		<0,001			NEN-EN 16167
Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101)	mg/kg Ms mg/kg Ms		0,001		NEN-EN 16167 NEN-EN 16167
Φ PCB (101)	mg/kg IVIS	<0,001	0,001		NEN-EN 1616/

. I diyomorobipmonyido				
Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118) PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
	riation			
Analyses sur éluat après lixiv	ml/g	10,0	0,1	Selon norme lixiviation
				page 3 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466564 Solide / Eluat

Spécification des échantillons P7 : 0-1

	Unité	_	_imite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	140	5	+/- 10	Selon norme lixiviation
рН		8,8	0	+/- 5	Selon norme lixiviation
Température	°C	20,1	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

בו בו	Résidu à sec	mg/l	110	100	+/- 22	Equivalent à NF EN ISO 15216
202	Fluorures (F)	mg/l	1,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,0	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	27	5	+/- 10	Conforme à ISO 15923-1
₹	COT	mg/l	1,5	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,0	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466564 Solide / Eluat

Spécification des échantillons P7 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX FRANCE

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466565 Solide / Eluat

Date de validation **08.08.2022**

Prélèvement **05.08.2022 14:46**

Prélèvement par: Client Spécification des échantillons P7 :1-2

Specification des echantillons	Ρ/	:1-2			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 18,9	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	n *) ml	900	1		Selon norme lixiviation
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,70	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 88,7	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05			Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,22	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	26	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	25	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,05	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	8,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05			Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05			Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	130			Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	S				
pH-H2O		° 8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
OOT O O	/l N /	0700	4000	. / 40	

8700

1000

+/- 16

COT Carbone Organique Total mg/kg Ms

Prétraitement pour analyses des métaux

page 1 de 5

conforme ISO 10694 (2008)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde	1182310	BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.		Solide / Eluat	•		•	
Spécification des échantillons	P7 :1-2					
Opcomodion des conditions			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN 1	16174; NF EN 13657
B# 54 page						(déchets)
Métaux	ma/ka Ma	.O. E	0.5		Conformo	à EN-ISO 11885, EN
Antimoine (Sb)	mg/kg Ms	<0,5	0,5			16174
Arsenic (As)	mg/kg Ms	5,7	1	+/- 15	Conforme	à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	64	1	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, EN
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme	16174 à EN-ISO 11885, EN
Ornome (Or)						16174
Cuivre (Cu)	mg/kg Ms	16	0,2	+/- 20		à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
n° Cde N° échant. Spécification des échantillons Minéralisation à l'eau régale Métaux Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme	à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	49	1	+/- 22	Conforme	à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	s Polycycliques (IS	SO)				10174
Naphtalène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
	mg/kg Ms					ent à NF EN 16181
Benzo(a)pyrène		<0,050	0,05			
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.			équivale	ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			équivale	ent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,030	0,03	+		SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
nvuiocaibuies	Ai Oillaudues	FUIVEVEIIUUES	แอบเ

•					
וַ	Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ī	Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ë	Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
<u>0</u>	Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Se	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
es	Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ed	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
3	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ä	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
>	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
D >	HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
إ	Somme HAP (VROM)	mg/kg Ms	n.d.	·	équivalent à NF EN 16181
 	HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

rqués du symbole " *) ".

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466565 Solide / Eluat

Spécification des échantillons	P7 :1-2				
Spécification des échantillons	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène T,1,1-Trichloroéthane T,1-Dichloroéthane T,2-Dichloroéthane T,2-Dichloroéthane T,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	,		ISO 22155
Fraction C5-C10 Fraction > C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	4,3	2	+/- 21	ISO 16703
Fraction C28-C32	*) mg/kg Ms	5,0	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	2,7	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28)	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
DOD (404)	/1 N.A	0.004	0.004		NIENI ENI 40407

i diyamarabiphanyida							
Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167			
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167			
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167			
Analyses sur éluat après lixiviation							
L/S cumulé	ml/g	10,0	0,1	Selon norme lixiviation			
				page 3 de 5			

Analyses sur	éluat après	lixiviation
--------------	-------------	-------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

17.08.2022 Date N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466565 Solide / Eluat

Spécification des échantillons P7:1-2

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	150	5	+/- 10	Selon norme lixiviation
pH		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,4	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

בו בו	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 152	:16
ממ	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, confo à EN 16192	orme
פֿ	Indice phénol	mg/l <	:0,010	0,01		NEN-EN 16192	
3	Chlorures (CI)	mg/l	2,6	0,1	+/- 10	Conforme à ISO 15923	3-1
Ę	Sulfates (SO4)	mg/l	13	5	+/- 10	Conforme à ISO 15923	3-1
₹	COT	mg/l	2,5	1	+/- 10	conforme EN 16192	

	sur	

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	22	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	4,8	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 17.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466565 Solide / Eluat

Spécification des échantillons P7 :1-2

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466566 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P4:0-1

Seuls les paramètres non		Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
ıran	Lixiviation						
g	Fraction >4mm (EN12457-2)	%	0	43,6	0,1		Selon norme lixiviation
<u>ĕ</u>	Masse brute Mh pour lixiviation	*) g	0	100	1		Selon norme lixiviation
SE.	Lixiviation (EN 12457-2)		0				NF EN 12457-2
လွ	Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
7.	Prétraitement des échantillon	s					
25.	Masse échantillon total inférieure à 2 kg	kg	0	0,60	0		
025	Prétraitement de l'échantillon		0	·			Conforme à NEN-EN 16179
17	Broyeur à mâchoires		0				méthode interne
EC 17025:2017	Matière sèche	%	0	89,3	0,01	+/- 1	NEN-EN 15934 ; EN12880
norme EN ISO/I	Calcul des Fractions solubles	;					
끄	Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Ē	Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
me	Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
5 D	Baryum cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
<u>a</u>	Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
sont accrédités selon la	Chlorures cumulé (var. L/S)	*) mg/kg Ms		18	1		Selon norme lixiviation
Se	Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
ites	COT cumulé (var. L/S)	*) mg/kg Ms		25	10		Selon norme lixiviation
ēd	Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,11	0,02		Selon norme lixiviation
င္တ	Fluorures cumulé (var. L/S)	*) mg/kg Ms		11	1		Selon norme lixiviation
ä	Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
	Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
_ຂ	Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,05	0,05		Selon norme lixiviation
SSI		*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Š	Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
AL-West	\ /	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
ā		*) mg/kg Ms		62	50		Selon norme lixiviation
SE	Zinc cumulé (var. L/S)	*) mg/kg Ms		0,05	0,02		Selon norme lixiviation
SIIS	Analyses Physico-chimiques						
Les parametres realises par	pH-H2O		0	8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
Ξ.	COT Carbone Organique Total	mg/kg Ms		9900	1000	+/- 16	conforme ISO 10694 (2008)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	C				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	15	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	47	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	10	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	47	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

Arsenic (As) mg/l Baryum (Ba) mg/l Cadmium (Cd) mg/l Chrome (Cr) mg/l Cuivre (Cu) mg/l Mercure (Hg) mg/l Molybdène (Mo) mg/l Nickel (Ni) mg/l Plomb (Pb) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc	466566 S P4 :0-1 éé Gg Ms		Usinite Quant. 0,5 1 0,1 0,2 0,2 0,05 1 0,5 0,5 1 1 1	Incert. Résultat % +/- 15 +/- 12 +/- 20 +/- 11 +/- 21	Méthode NF-EN 16 Conforme à Conforme à	6174; NF EN 13657 (déchets) à EN-ISO 11885, EN 16174 à EN-ISO 11885, EN
N° échant. Spécification des échantillons Uni Minéralisation à l'eau régale Métaux Antimoine (Sb) mg/k Arsenic (As) mg/k Baryum (Ba) mg/k Cadmium (Cd) mg/k Chrome (Cr) mg/k Mercure (Hg) mg/k Molybdène (Mo) mg/k Nickel (Ni) mg/k Plomb (Pb) mg/k Zinc (Zn) mg/k Hydrocarbures Aromatiques Polyc Naphtalène mg/k Acénaphtylène mg/k Acénaphtène mg/k Phénanthrène mg/k Anthracène mg/k Anthracène mg/k Fluoranthène mg/k Pyrène mg/k Benzo(a)anthracène mg/k Chrysène mg/k Benzo(b)fluoranthène mg/k	466566 S P4:0-1 é g Ms g M	Solide / Eluat Résultat <0,5 15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	0,5 1 0,1 0,2 0,2 0,05 1 0,5 0,5	Incert. Résultat % +/- 15 +/- 12 +/- 12 +/- 11 +/- 11	Méthode NF-EN 16 Conforme à Conforme à	(déchets) a EN-ISO 11885, EN 16174 a ISO 16772 et EN 16174 a EN-ISO 11885, EN 16174
Minéralisation à l'eau régale Métaux Antimoine (Sb) mg/l Arsenic (As) mg/l Baryum (Ba) mg/l Cadmium (Cd) mg/l Chrome (Cr) mg/l Cuivre (Cu) mg/l Mercure (Hg) mg/l Molybdène (Mo) mg/l Plomb (Pb) mg/l Sélénium (Se) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Pluorène mg/l Anthracène mg/l Fluoranthène mg/l Pluoranthène mg/l Anthracène mg/l Pluoranthène mg/l Pluoranthène mg/l Plyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l Benzo(b)fluoranthène mg/l Benzo(b)fluoranthène mg/l	P4:0-1 né ng Ms ng Ms	Résultat <0,5 15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	0,5 1 0,1 0,2 0,2 0,05 1 0,5 1 0,5 1 1	+/- 15 +/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	(déchets) a EN-ISO 11885, EN 16174 a ISO 16772 et EN 16174 a EN-ISO 11885, EN 16174
Minéralisation à l'eau régale Métaux Antimoine (Sb) mg/h Arsenic (As) mg/h Baryum (Ba) mg/h Cadmium (Cd) mg/h Chrome (Cr) mg/h Cuivre (Cu) mg/h Mercure (Hg) mg/h Molybdène (Mo) mg/h Nickel (Ni) mg/h Plomb (Pb) mg/h Sélénium (Se) mg/h Zinc (Zn) mg/h Hydrocarbures Aromatiques Polyc Naphtalène mg/h Acénaphtylène mg/h Acénaphtène mg/h Fluorène mg/h Anthracène mg/h Anthracène mg/h Anthracène mg/h Phénanthrène mg/h Anthracène mg/h Benzo(a)anthracène mg/h Benzo(b)fluoranthène mg/h Benzo(b)fluoranthène mg/h	eé Tog Ms	<0,5 15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	0,5 1 0,1 0,2 0,2 0,05 1 0,5 1 0,5 1 1	+/- 15 +/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	(déchets) a EN-ISO 11885, EN 16174 a ISO 16772 et EN 16174 a EN-ISO 11885, EN 16174
Métaux Antimoine (Sb) mg/l Arsenic (As) mg/l Baryum (Ba) mg/l Cadmium (Cd) mg/l Chrome (Cr) mg/l Cuivre (Cu) mg/l Mercure (Hg) mg/l Molybdène (Mo) mg/l Nickel (Ni) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtylène mg/l Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Anthracène mg/l Phénaphtène mg/l Anthracène mg/l Phénaphtène mg/l Anthracène mg/l Phénanthrène mg/l Anthracène mg/l Phénanthrène mg/l Anthracène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l	eg Ms	<0,5 15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	0,5 1 0,1 0,2 0,2 0,05 1 0,5 1 0,5 1 1	+/- 15 +/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	(déchets) a EN-ISO 11885, EN 16174
Métaux Antimoine (Sb) mg/l Arsenic (As) mg/l Baryum (Ba) mg/l Cadmium (Cd) mg/l Chrome (Cr) mg/l Cuivre (Cu) mg/l Mercure (Hg) mg/l Molybdène (Mo) mg/l Nickel (Ni) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtylène mg/l Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Anthracène mg/l Phénaphtène mg/l Anthracène mg/l Phénaphtène mg/l Anthracène mg/l Phénanthrène mg/l Anthracène mg/l Phénanthrène mg/l Anthracène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l	eg Ms	<0,5 15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	0,5 1 1 0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 15 +/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	(déchets) à EN-ISO 11885, E1 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E1 16174
Métaux Antimoine (Sb) mg/k Arsenic (As) mg/k Baryum (Ba) mg/k Cadmium (Cd) mg/k Chrome (Cr) mg/k Cuivre (Cu) mg/k Mercure (Hg) mg/k Molybdène (Mo) mg/k Nickel (Ni) mg/k Plomb (Pb) mg/k Zinc (Zn) mg/k Hydrocarbures Aromatiques Polyc Naphtalène mg/k Acénaphtylène mg/k Acénaphtène mg/k Acénaphtène mg/k Anthracène mg/k Anthracène mg/k Pluoranthène mg/k Pluoranthène mg/k Anthracène mg/k Pluoranthène mg/k Anthracène mg/k Pluoranthène mg/k Benzo(a)anthracène mg/k Benzo(b)fluoranthène mg/k	ag Ms	15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47	1 0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	(déchets) à EN-ISO 11885, E1 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E1 16174
Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtylène Acénaphtylène Aromatiques Phénanthrène Mylickel (Mo) Mg/li Hydrocarbures Aromatiques Mg/li Acénaphtylène Mg/li Acénaphtylène Mg/li Acénaphtène Mg/li Alichracène Mg/li Anthracène Fluoranthène Mg/li Anthracène Mg/li Benzo(a)anthracène Mg/li Benzo(b)fluoranthène Mg/li Benzo(b)fluoranthène	ag Ms	15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47	1 0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	à EN-ISO 11885, El 16174 à EN-ISO 11885, El 16174
Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtylène Acénaphtylène Aromatiques Phénanthrène Mylickel (Mo) Mg/li Hydrocarbures Aromatiques Mg/li Acénaphtylène Mg/li Acénaphtylène Mg/li Acénaphtène Mg/li Alichracène Mg/li Anthracène Fluoranthène Mg/li Anthracène Mg/li Benzo(a)anthracène Mg/li Benzo(b)fluoranthène Mg/li Benzo(b)fluoranthène	ag Ms	15 47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47	1 0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	16174 à EN-ISO 11885, E1 16174
Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène Mg/k Chrysène Mg/k Benzo(b)fluoranthène mg/k M	ag Ms	47 <0,1 23 10 <0,05 <1,0 16 18 <1,0 47 SO)	1 0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 12 +/- 20 +/- 11 +/- 11	Conforme a	à EN-ISO 11885, El 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, El 16174 à EN-ISO 11885, El 16174 à EN-ISO 11885, El 16174 à EN-ISO 11885, El 16174
Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène Benzo(a)anthracène Mg/k Chrysène Mg/k Benzo(b)fluoranthène mg/k M	ag Ms	<0,1 23 10 <0,05 <1,0 16 18 <1,0 47	0,1 0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 20 +/- 11 +/- 11	Conforme a	à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E
Cadmium (Cd) mg/k Chrome (Cr) mg/k Cuivre (Cu) mg/k Mercure (Hg) mg/k Molybdène (Mo) mg/k Nickel (Ni) mg/k Plomb (Pb) mg/k Sélénium (Se) mg/k Zinc (Zn) mg/k Hydrocarbures Aromatiques Polyc Naphtalène mg/k Acénaphtylène mg/k Acénaphtène mg/k Pluorène mg/k Anthracène mg/k Anthracène mg/k Pluoranthène mg/k Pyrène mg/k Benzo(a)anthracène mg/k Benzo(b)fluoranthène mg/k	ag Ms	<0,1 23 10 <0,05 <1,0 16 18 <1,0 47	0,2 0,2 0,05 1 0,5 0,5	+/- 12 +/- 20 +/- 11 +/- 11	Conforme a Conforme a Conforme a Conforme a Conforme a Conforme a	à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Chrome (Cr) mg/k Cuivre (Cu) mg/k Mercure (Hg) mg/k Molybdène (Mo) mg/k Nickel (Ni) mg/k Plomb (Pb) mg/k Sélénium (Se) mg/k Zinc (Zn) mg/k Hydrocarbures Aromatiques Polyc Mg/k Naphtalène mg/k Acénaphtylène mg/k Acénaphtène mg/k Fluorène mg/k Anthracène mg/k Anthracène mg/k Benzo(a)anthracène mg/k Chrysène mg/k Benzo(b)fluoranthène mg/k	ag Ms	23 10 <0,05 <1,0 16 18 <1,0 47	0,2 0,2 0,05 1 0,5 0,5	+/- 20 +/- 11 +/- 11	Conforme a Conforme a Conforme a Conforme a Conforme a Conforme a	16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E
Cuivre (Cu) Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtène Pluorène Phénanthrène Anthracène Fluoranthène Myli Anthracène Myli Benzo(a)anthracène Mg/I Benzo(b)fluoranthène mg/I	ag Ms	10 <0,05 <1,0 16 18 <1,0 47	0,2 0,05 1 0,5 0,5	+/- 20 +/- 11 +/- 11	Conforme a Conforme a Conforme a Conforme a Conforme a	16174 à EN-ISO 11885, E 16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Mercure (Hg) Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Mydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Macénaphtène Fluorène Phénanthrène Myhracène Fluoranthène Myhracène Fluoranthène Myhrène Myhracène Myhracène Myhracène Myhracène Myhracène Myhracène Myhracène Myhrène Myhracène Myhracène Myhrène	ag Ms	<0,05 <1,0 16 18 <1,0 47	0,05 1 0,5 0,5	+/- 11 +/- 11	Conforme a Conforme a Conforme a Conforme a	16174 à ISO 16772 et EN 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Mg/k Benzo(a)anthracène Mg/k Benzo(b)fluoranthène Mg/k	ag Ms	<1,0 16 18 <1,0 47	1 0,5 0,5	+/- 11	Conforme a Conforme a Conforme a	16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Nickel (Ni) mg/l Plomb (Pb) mg/l Sélénium (Se) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Pluorène mg/l Anthracène mg/l Fluoranthène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l Benzo(b)fluoranthène mg/l	ag Ms ag Ms ag Ms ag Ms ag Ms ag Ms ycliques (IS	16 18 <1,0 47	0,5 0,5 1	+/- 11	Conforme a	16174 à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Plomb (Pb) mg/l Sélénium (Se) mg/l Zinc (Zn) mg/l Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l	kg Ms kg Ms kg Ms ycliques (IS	18 <1,0 47 SO)	0,5	+/- 11	Conforme a	à EN-ISO 11885, E 16174 à EN-ISO 11885, E 16174
Sélénium (Se) Zinc (Zn) Hydrocarbures Aromatiques Polyc Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène My/k Benzo(a)anthracène Mg/k Benzo(b)fluoranthène Mg/k	g Ms g Ms ycliques (IS	<1,0 47 SO)	1		Conforme à	à EN-ISO 11885, E 16174
Aromatiques Polyce Naphtalène mg/k Acénaphtylène mg/k Acénaphtène mg/k Phénanthrène mg/k Anthracène mg/k Pluoranthène mg/k Plyrène mg/k Benzo(a)anthracène mg/k Benzo(b)fluoranthène mg/k Benzo(b)fluoranthène mg/k	g Ms ycliques (IS	47 SO)		+/- 22		
Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Acénaphtène mg/l All Phénanthrène mg/l Anthracène mg/l Pluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l	ycliques (IS	SO)	1	+/- 22		
Hydrocarbures Aromatiques Polyc Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l Benzo(b)fluoranthène mg/l	ycliques (IS	SO)			Conforme a	<u>16174</u> à EN-ISO 11885, E
Naphtalène mg/l Acénaphtylène mg/l Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l						16174
Acénaphtylène mg/l Acénaphtène mg/l Acénaphtène mg/l Fluorène mg/l Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l	ag ivis	.0.050	0.05		á au incolor	at à NIC EN 1610
Acénaphtène mg/l Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l		<0,050 <0,050	0,05 0,05			nt à NF EN 1618 nt à NF EN 1618
Fluorène mg/l Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Benzo(b)fluoranthène mg/l		<0,050	0,05			nt à NF EN 1618
Phénanthrène mg/l Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l	-	<0,050	0,05			nt à NF EN 1618
Anthracène mg/l Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l	-	<0,050	0,05			nt à NF EN 1618
Fluoranthène mg/l Pyrène mg/l Benzo(a)anthracène mg/l Chrysène mg/l Benzo(b)fluoranthène mg/l		<0,050				nt à NF EN 1618
Pyrènemg/lBenzo(a)anthracènemg/lChrysènemg/lBenzo(b)fluoranthènemg/l	-		0,05			
Benzo(a)anthracènemg/lChrysènemg/lBenzo(b)fluoranthènemg/l		<0,050	0,05			nt à NF EN 1618
Chrysène mg/l Benzo(b)fluoranthène mg/l		<0,050	0,05			nt à NF EN 1618
Benzo(b)fluoranthène mg/l		<0,050	0,05			nt à NF EN 1618
		<0,050	0,05			nt à NF EN 1618
Benzo(k)fluoranthène mg/l		<0,050	0,05			nt à NF EN 1618
· · ·		<0,050	0,05			nt à NF EN 1618
	g Ms	<0,050	0,05			nt à NF EN 1618
177	rg Ms	<0,050	0,05			nt à NF EN 1618
Benzo(g,h,i)pérylène mg/k	rg Ms	<0,050	0,05			nt à NF EN 1618
Indéno(1,2,3-cd)pyrène mg/l	kg Ms	<0,050	0,05		équivale	nt à NF EN 1618
HAP (6 Borneff) - somme mg/k	rg Ms	n.d.			équivale	nt à NF EN 1618
Somme HAP (VROM) mg/l	g Ms	n.d.			équivale	nt à NF EN 1618
	g Ms	n.d.			équivale	nt à NF EN 1618
Composés aromatiques						
	g Ms	<0,050	0,05		18	SO 22155
	g Ms	<0,050	0,05			SO 22155
	g Ms	<0,050	0,05			SO 22155
	g Ms	<0,10	0,00			SO 22155
o-Xylène mg/l						
Naphtalène mg/l	ra IVIS	<0,050	0,05		10	SO 22155

ĸ	oomposes aromanques				
1	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ט	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ŭ	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
5	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
<u>g</u>	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.20
RAPPORT D'ANALYSES					N° Client	350065
	4400040 5	0000 4775 1	Draiati O	CCDCE	04 5-4:	
n° Cde			Projet: C	SSPSE2222	04 Frejus	
N° échant.		olide / Eluat				
Spécification des échantillons	P4 :0-1					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme	à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms *) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36		<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.				N-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				N-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NE	EN-EN 16167
Analyses sur éluat après lixiv	/iation_					
L/S cumulé	ml/g	10,0	0,1		Selor	norme lixiviation

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

-	. c., cc. cpc, .cc				
ם	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Se S	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
-	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
7	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
g	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Ses	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ä	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
<u>e</u>	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ĕ	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466566 Solide / Eluat

Spécification des échantillons P4 :0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	86,8	5	+/- 10	Selon norme lixiviation
pH		8,2	0	+/- 5	Selon norme lixiviation
Température	°C	20,7	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

בו בו	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
202	Fluorures (F)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l <	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,8	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	6,2	5	+/- 10	Conforme à ISO 15923-1
≦	COT	mg/l	2,5	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	11	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	5,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	5,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 13.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

es paramètres réalisés par AL-West

B

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466566 Solide / Eluat

Spécification des échantillons P4 :0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466567 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P4:1-1,4

Seuls les parametres non Seuls les parametres non Spirit les parametre		Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
<u>ខ្ច</u> <u>Lix</u>	civiation						
Fra	action >4mm (EN12457-2)	%	0	23,9	0,1		Selon norme lixiviation
<u>ĕ</u> Ma	sse brute Mh pour lixiviation	*) g	•	97	1		Selon norme lixiviation
S Lix	iviation (EN 12457-2)		•				NF EN 12457-2
წ Volu	ume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
ຼີ Pre	étraitement des échantillons	s					
Mas	sse échantillon total inférieure à 2 kg	kg	•	0,60	0		
Š Pré	traitement de l'échantillon		•				Conforme à NEN-EN 16179
Bro	yeur à mâchoires		0				méthode interne
	tière sèche	%	0	93,1	0,01	+/- 1	NEN-EN 15934 ; EN12880
Frac Ant Ans Bai	Icul des Fractions solubles						
Frac	ction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
⊒ Ant	imoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
E Ars	senic cumulé (var. L/S)	*) mg/kg Ms		0,07	0,05		Selon norme lixiviation
Ē Ba⊦	ryum cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
<u>∞</u> Ca	dmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
sont accredites selon in Chi Chi Chi Indi Indi Indi Indi Indi	orures cumulé (var. L/S)	*) mg/kg Ms		11	1		Selon norme lixiviation
∰ Ch	rome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
	T cumulé (var. L/S)	*) mg/kg Ms		26	10		Selon norme lixiviation
E Cu	ivre cumulé (var. L/S)	*) mg/kg Ms		0,09	0,02		Selon norme lixiviation
ဋ္ဌ Flu		*) mg/kg Ms		11	1		Selon norme lixiviation
E Indi		*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
		*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
		*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
ក្ត Nic		*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
		*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
∃ Sél		*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
g Sul	,	*) mg/kg Ms		0 - 50	50		Selon norme lixiviation
က္က Zin	c cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
≝̃ An	alyses Physico-chimiques						
တ္က '	-H2O		0	8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
<u> </u>	OT Carbone Organique Total	mg/kg Ms		8000	1000	+/- 16	conforme ISO 10694 (2008)

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	•				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	34	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	52	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	18	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	10	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	52	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

RAPPORT D'ANALYSES					Date N° Client	17.08.20 350065
n° Cde	110221	0 BC22 4775	Droiot: C	ecpe=222	204 Eróine	
		0 BC22-4775	Projet. C	,33P3E222	204 Fiejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P4 :1-1	,4				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657 (déchets)
V létaux						
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conforme	è à EN-ISO 11885, EI
Arsenic (As)	mg/kg Ms	34	1	+/- 15	Conforme	16174 e à EN-ISO 11885, E
Baryum (Ba)	mg/kg Ms	52	1	+/- 12	Conforme	16174 e à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	18		+/- 12		16174 e à EN-ISO 11885, E
			0,2			16174
Cuivre (Cu)	mg/kg Ms	10	0,2	+/- 20		è à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	e à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme	è à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme	e à EN-ISO 11885, E
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	16174 e à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	52	1	+/- 22	Conforme	16174 e à EN-ISO 11885, E
						16174
Hydrocarbures Aromatiques			0.05		£ a	
Naphtalène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618 ^a ent à NF EN 1618 ^a
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène Elucrèna	mg/kg Ms		0,05			ent à NF EN 1618
Fluorène		<0,050				ent à NF EN 1618
Phénanthrène	mg/kg Ms mg/kg Ms	<0,050	0,05			
Anthracène		<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équival	ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
			U.UU	1	1	100

Com	nosés	aromatiques

22	Composes aromatiques				
2	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ט	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ŭ	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
7	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

qués du symbole " *) ".

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466567 Solide / Eluat

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C28-C32	*) mg/kg Ms	3,0	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Analyses sur éluat après lixiv	riation				
L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation

6167 6167
6167
6167
6167
6167
6167
6167
6167

Analyses sur é	luat après lixiviation
----------------	------------------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466567 Solide / Eluat

Spécification des échantillons P4 :1-1,4

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	96,2	5	+/- 10	Selon norme lixiviation
pH		8,2	0	+/- 5	Selon norme lixiviation
Température	°C	20,4	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
СОТ	mg/l	2,6	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	7,2	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	8,8	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466567 Solide / Eluat

Spécification des échantillons P4:1-1,4

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

accrédités et/ou externalisés sont marqués du symbole " *) ". N° échant. 466568 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P11:0-0,8

Ξ	opcomodicir des conditament		,.			
3		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
2		Office	Nesultat	Quant.	Resultat 70	Wethode
3	Lixiviation			1		
2	Fraction >4mm (EN12457-2)	%	° 31,4	0,1		Selon norme lixiviation
2	Masse brute Mh pour lixiviation *)	g	° 94	1		Selon norme lixiviation
5	Lixiviation (EN 12457-2)		0			NF EN 12457-2
5	Volume de lixiviant L ajouté pour l'extraction *)	ml	900	1		Selon norme lixiviation
-	Prétraitement des échantillons					
į	Masse échantillon total inférieure à 2 kg	kg	° 0,64	0		
Š	Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
-	Broyeur à mâchoires		0			méthode interne
3	Matière sèche	%	° 96,0	0,01	+/- 1	NEN-EN 15934 ; EN12880
5	Calcul des Fractions solubles					
_	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
j	Antimoine cumulé (var. L/S) *)	mg/kg Ms	0 - 0,05			Selon norme lixiviation
	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
2	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
<u>0</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
5	Chlorures cumulé (var. L/S) *)	mg/kg Ms	11	1		Selon norme lixiviation
מ	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
מַ	COT cumulé (var. L/S)	mg/kg Ms	35	10		Selon norme lixiviation
5	Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02		Selon norme lixiviation
3	Fluorures cumulé (var. L/S) *)	mg/kg Ms	3,0	1		Selon norme lixiviation
=	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
5	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
2	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
ĭ	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
>	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Ļ	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Ē	Sulfates cumulé (var. L/S)	mg/kg Ms	77	50		Selon norme lixiviation
5	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
2	Analyses Physico-chimiques					
0	pH-H2O		° 7,9	0,1	+/- 10	Cf. NEN-ISO 10390 (sol

12000

1000

Prétraitement pour analyses des métaux

COT Carbone Organique Total

uniquement)

conforme ISO 10694 (2008)

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	1,0	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	25	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	4,1	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	4,3	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	3,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	57	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

DADDODT DIAMAI VEEC					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES	440	2010 D 200 1775	5	000000000	2004 F /:	
n° Cde		2310 BC22-4775	Projet: C	SSPSE222	204 Frejus	
N° échant.	466	568 Solide / Eluat				
Spécification des échantillons	P11	: 0-0,8				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale		0			NF-EN	16174; NF EN 13657 (déchets)
Métaux					I	(decilets)
Antimoine (Sb)	mg/kg Ms	1,0	0,5	+/- 10	Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme	16174 à EN-ISO 11885, EN
						16174
Baryum (Ba)	mg/kg Ms	25	1	+/- 12		à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	4,1	0,2	+/- 12	Conforme	à EN-ISO 11885, EN
Cuivre (Cu)	mg/kg Ms	4,3	0,2	+/- 20	Conforme	16174 à EN-ISO 11885, EN
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	16174 e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, EN
` '						16174
Nickel (Ni)	mg/kg Ms	3,7	0,5	+/- 11		à EN-ISO 11885, El 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme	à EN-ISO 11885, Et 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, El 16174
Zinc (Zn)	mg/kg Ms	57	1	+/- 22	Conforme	à EN-ISO 11885, El
Uvdraashuras Aramatiquas	. Polyovoliau	ne (ISO)				16174
Hydrocarbures Aromatiques Naphtalène	mg/kg Ms	0,089	0,05	+/- 27	óquival	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050		+/- 21		ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
						ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050				
Fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,0890 x)				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,0890 ×)				ent à NF EN 16181
Composés aromatiques	1 3 3 -	-,			1 - 1-1-1-1	
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
	mg/kg Ms			+		
Toluène		<0,050				ISO 22155
Ethylbenzène	mg/kg Ms	<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10				ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155

Composés a	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

					Date	17.08.20
RAPPORT D'ANALYSES					N° Client	350065
n° Cde	11000	0 DC22 4775	Droint: C	eeneeaaa	204 Eráina	
		0 BC22-4775	Projet. C	33P3E222	204 Frejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P11 : 0	-0,8				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode)
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)	· ·			·		
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			e à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles		,			•	
Somme 6 PCB	mg/kg Ms	n.d.				IEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				IEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	+ +	I	IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	+		IEN-EN 16167
PCB (178)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (193)	mg/kg Ms	<0,001	0,001	+ +		IEN-EN 16167
•		~0,001	0,001			ILIN-LIN 10101
Analyses sur éluat après lixiv					1 .	p. 1
L/S cumulé	ml/g	10,0	0,1		Seld	on norme lixiviation

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

6167 6167
6167
6167
6167
6167
6167
6167
6167

Analyses sur é	luat après lixiviation
----------------	------------------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466568 Solide / Eluat

Spécification des échantillons P11 : 0-0,8

	Unité	_	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	110	5	+/- 10	Selon norme lixiviation
рН		8,2	0	+/- 5	Selon norme lixiviation
Température	°C	20,2	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

=	initially cook in hydroc cinning acco					
2	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פ	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	7,7	5	+/- 10	Conforme à ISO 15923-1
=	COT	mg/l	3,5	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
- Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466568 Solide / Eluat

Spécification des échantillons P11 : 0-0,8

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

accrédités et/ou externalisés sont marqués du symbole " *) ". N° échant. 466569 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P2:0-1

	Unité	Résu	Limite Itat Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2) %	° 3	1,8 0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	94 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'ex	ktraction *) ml	(000 1		Selon norme lixiviation
Prétraitement des écha	ntillons				
Masse échantillon total inférieure à 2	2 kg kg	° 0	,64 0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 9	6,0 0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions so	lubles				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 10	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,05 0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		,06 0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0	,10 0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		9,0 1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,02 0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		33 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0	,10 0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		8,0 1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)) *) mg/kg Ms	0 -	0,1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,00	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,05 0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0			Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,05 0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,05 0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 -	50 50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0	,03 0,02		Selon norme lixiviation
Analyses Physico-chim	iques				
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chim pH-H2O COT Carbone Organique To Prétraitement pour anal			8,5 0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique To	otal mg/kg Ms	190	1000	+/- 16	conforme ISO 10694 (2008)

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,9	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	16	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	91	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,4	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	34	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	120	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures A	Aromatiques	Polycycliques	(180)
nvarocarbures	Aromatiques	Polycycliques	(ISO)

DARDODT DIANAL VOCO					Date N° Client	17.08.20 350065
RAPPORT D'ANALYSES	440004	6 DOOG 4775	D	000000000	1004 Fall -	
n° Cde		0 BC22-4775	Projet: C	SSPSE222	204 Frejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P2 : 0-1					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux					-	(Granting)
Antimoine (Sb)	mg/kg Ms	0,9	0,5	+/- 10	Conforme	à EN-ISO 11885, E
Arsenic (As)	mg/kg Ms	16	1	+/- 15	Conforme	16174 à EN-ISO 11885, E
Baryum (Ba)	mg/kg Ms	91	1	+/- 12	Conforme	16174 à EN-ISO 11885, E
	mg/kg Ms			+/- 21		16174 à EN-ISO 11885, E
Cadmium (Cd)		0,4	0,1			16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12		à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme	à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et El 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme	à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	34	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, E
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	120	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
				17 22		16174
Hydrocarbures Aromatique						
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05	/ 00		ent à NF EN 1618
Phénanthrène	mg/kg Ms	0,065	0,05	+/- 20		ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,14	0,05	+/- 17		ent à NF EN 1618
Pyrène	mg/kg Ms	0,14	0,05	+/- 19		ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,061	0,05	+/- 14		ent à NF EN 1618
Chrysène	mg/kg Ms	0,072	0,05	+/- 14	équival	ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,086	0,05	+/- 12	équival	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,066	0,05	+/- 17		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,292 x)	,			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	0,404 ×)				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	0,630 ×)				ent à NF EN 1618
Composés aromatiques	inging Ma	0,030				CIR CINI LIN 1010
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
				+		
Ethylbenzène	mg/kg Ms	<0,050	0,05	+		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
<i>o-Xylène</i> Naphtalène	mg/kg Ms mg/kg Ms	<0,050 <0,10	0,05 0,1			ISO 22155
				1	1	ISO 22155

Composés a	aromatiques
------------	-------------

22	zomposes aromanques					
ESE	Benzène	mg/kg Ms	<0,050	0,05		ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05		ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05		ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1		ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05		ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1		ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.20
DADDODT DIANAL VECE					N° Client	350065
RAPPORT D'ANALYSES	4400040					
n° Cde		3C22-4775	Projet: C	SSPSE222	2204 Fréjus	
N° échant.	466569 Sc	olide / Eluat				
Spécification des échantillons	P2 : 0-1					
•			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV					-	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)				·		
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 x)	1			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	23,2	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	2,3	2	+/- 21		ISO 16703
Fraction C24-C28	*) mg/kg Ms	4,8	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	6,4	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	3,9	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,0090 ×)			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0090 x)				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	0,003	0,001	+/- 30		EN-EN 16167
PCB (153)	mg/kg Ms	0,003	0,001	+/- 22		EN-EN 16167
PCB (180)	mg/kg Ms	0,003	0,001	+/- 12		EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Salo	n norme lixiviation

3	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
5	Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
1	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
-	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
,	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	23,2	20	+/- 21	ISO 16703
2	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
2	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
5	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
5	Fraction C20-C24	mg/kg Ms	2,3	2	+/- 21	ISO 16703
	Fraction C24-C28	mg/kg Ms	4,8	2	+/- 21	ISO 16703
2	Fraction C28-C32	mg/kg Ms	6,4	2	+/- 21	ISO 16703
3	Fraction C32-C36	mg/kg Ms	3,9	2	+/- 21	ISO 16703
=	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

0.900.0					
omme 6 PCB	mg/kg Ms	0,0090 x)			NEN-EN 16167
omme 7 PCB (Ballschmiter)	mg/kg Ms	0,0090 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,003	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,003	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,003	0,001	+/- 12	NEN-EN 16167
	omme 7 PCB (Ballschmiter) CB (28) CB (52) CB (101) CB (118) CB (138) CB (153)	comme 7 PCB (Ballschmiter) mg/kg Ms CB (28) mg/kg Ms CB (52) mg/kg Ms CB (101) mg/kg Ms CB (118) mg/kg Ms CB (138) mg/kg Ms CB (153) mg/kg Ms	comme 7 PCB (Ballschmiter) mg/kg Ms 0,0090 **) CB (28) mg/kg Ms <0,001 CB (52) mg/kg Ms <0,001 CB (101) mg/kg Ms <0,001 CB (118) mg/kg Ms <0,001 CB (138) mg/kg Ms 0,003 CB (153) mg/kg Ms 0,003	comme 7 PCB (Ballschmiter) mg/kg Ms 0,0090 x) CB (28) mg/kg Ms <0,001 0,001 CB (52) mg/kg Ms <0,001 0,001 CB (101) mg/kg Ms <0,001 0,001 CB (118) mg/kg Ms <0,001 0,001 CB (138) mg/kg Ms 0,003 0,001 CB (153) mg/kg Ms 0,003 0,001	comme 7 PCB (Ballschmiter) mg/kg Ms 0,0090 ** CB (28) mg/kg Ms <0,001 0,001 0,001 CB (52) mg/kg Ms <0,001 0,001 0,001 0,001 CB (101) mg/kg Ms <0,001 0,001 0,001 0,001 0,001 0,001 CB (118) mg/kg Ms <0,001 0,001

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

17.08.2022 Date N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466569 Solide / Eluat

Spécification des échantillons P2:0-1

	Unité		nite uant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	96,6	5	+/- 10	Selon norme lixiviation
рН		8,3	0	+/- 5	Selon norme lixiviation
Température	°C	20,2	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
СОТ	mg/l	3,3	1	+/- 10	conforme EN 16192

	sur	

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	10	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	9,8	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466569 Solide / Eluat

Spécification des échantillons P2 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466570 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P10:0-0,8

•	Unité	, Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 17,0	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *)	g	° 95	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *)	ml	900	1		Selon norme lixiviation
Prétraitement des échantillons					
Masse échantillon total inférieure à 2 kg	kg	° 0,63	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 94,6	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles					
Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	14	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	23	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,08	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	7,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,03	0,02		Selon norme lixiviation

Anai	yses	Pn	ysico-cnimic	lues

pH-H2O		° 7,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	7100	1000	+/- 16	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	44	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	12	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	7,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	57	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)		·	

Hydrocarbures A	Aromatiques	Polycycliques	(ISO)
nvurocarbures /	410manuues	Polycycliques	แอบา

RAPPORT D'ANALYSES					Date N° Client	17.08.20 350065
n° Cde	11022	10 BC22 4775	Droiot: C	ecpe=222	204 Eróius	
		10 BC22-4775	Projet. C	,33P3E222	204 Fiejus	
N° échant.		O Solide / Eluat				
Spécification des échantillons	P10 : 0	0-0,8				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	C				NF-EN	16174; NF EN 13657 (déchets)
V létaux						
Antimoine (Sb)	mg/kg Ms	0,6	0,5	+/- 10	Conforme	à EN-ISO 11885, El
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme	16174 e à EN-ISO 11885, El
Baryum (Ba)	mg/kg Ms	44	1	+/- 12	Conforme	16174 e à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	12		+/- 12		16174 e à EN-ISO 11885, E
			0,2			16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20		è à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	è à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	7,2	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	22	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	57	1	+/- 22	Conforme	16174 e à EN-ISO 11885, E
Hydrocarbures Aromatiques	Polyovoliguos	(180)				16174
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Ruorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène			0,05			ent à NF EN 1618
Anthracène	mg/kg Ms mg/kg Ms	<0,050 <0,050				ent à NF EN 1618
			0,05			
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équival	ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
		~0.030	0.00	1	1	100 22 100

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

					Date	17.08.20
RAPPORT D'ANALYSES					N° Client	350065
n° Cde	11823	I 0 BC22-4775	Projet: C	SSPSF2222	004 Fréiμs	
N° échant.		Solide / Eluat	Tojot. O	OOI OLZZZZ	.0+110ju3	
Spécification des échantillons	P10 : 0	-0,8				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
- V I)			Quant.	Resultat 70	Methode	100 00155
Somme Xylènes	mg/kg Ms mg/kg Ms	n.d.				ISO 22155
BTEX total	/ Ing/kg ivis	n.d.				ISO 22155
COHV		2.22				100 00455
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane Trichlorométhane	mg/kg Ms mg/kg Ms	<0,05 <0,05	0,05 0,05			ISO 22155 ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4		conforme	à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms *) mg/kg Ms	<4,0	4			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2 2			ISO 16703 ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles		7-1				
Somme 6 PCB	mg/kg Ms	n.d.			NI	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Solo	n norme lixiviation

3	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
5	Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
-	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
•	Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
1	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
3	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
-	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
7	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
2	Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
2	Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
5	Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
5	Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
	Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
2	Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
3	Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
	Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

_	,,,				
ם	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Se es	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
-	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
2	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
g	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Ses	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ä	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
<u>e</u>	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ĕ	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466570 Solide / Eluat

Spécification des échantillons P10 : 0-0,8

	Unité		ant. Résultat	% Méthode
Conductivité électrique	μS/cm	75,5	5 +/- 10	Selon norme lixiviation
pH		8,0	0 +/- 5	Selon norme lixiviation
Température	°C	20,1	0	Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פֿ	Indice phénol	mg/l <	:0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	1,4	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
Ξ	COT	mg/l	2,3	1	+/- 10	conforme EN 16192

Métaux sur éluat	· ·				
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	7,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,9	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

es paramètres réalisés par AL-West

B

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466570 Solide / Eluat

Spécification des échantillons P10 : 0-0,8

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

> > Méthode

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466571 Solide / Eluat

Unité

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P5: 0,4-1,1

Lixiviation						
Fraction >4mm (EN12457-2)	%	•	65,7	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *)	g	۰	98	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation
Prétraitement des échantillons	i					
Masse échantillon total inférieure à 2 kg	kg	۰	0,67	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	93,3	0,01	+/- 1	NEN-EN 15934 ; EN12880

Résultat

Limite

Quant.

Incert.

Résultat %

ISO/IEC 17025:2017. Seuls les paramètres non Matière sèche 93,3 0,01 **Calcul des Fractions solubles**

Fraction soluble cumulé (var. L/S)	mg/kg Ms	5300	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,17	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	47	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	36	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,11	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	2400	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiqu

<u> </u>	Fraction soluble cumulé (var. L/S)	mg/kg Ms	5300	1000		Selon norme lixiviation				
EN EN	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation				
norme	Arsenic cumulé (var. L/S)) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation				
2	Baryum cumulé (var. L/S)	mg/kg Ms	0,17	0,1		Selon norme lixiviation				
<u>a</u>	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation				
selon	Chlorures cumulé (var. L/S)	mg/kg Ms	47	1		Selon norme lixiviation				
	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation				
ités	COT cumulé (var. L/S)	mg/kg Ms	36	10		Selon norme lixiviation				
réd	Cuivre cumulé (var. L/S)) mg/kg Ms	0,03	0,02		Selon norme lixiviation				
accrédités	Fluorures cumulé (var. L/S)) mg/kg Ms	6,0	1		Selon norme lixiviation				
sont a	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation				
SO	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation				
BS	Molybdène cumulé (var. L/S)	mg/kg Ms	0,11	0,05		Selon norme lixiviation				
est est	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation				
-West	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation				
Æ	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation				
par	Sulfates cumulé (var. L/S)	mg/kg Ms	2400	50		Selon norme lixiviation				
és p	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation				
réalisé	Analyses Physico-chimiques									
	pH-H2O		° 8,1	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)				
ètre	COT Carbone Organique Total	mg/kg Ms	7900	1000	+/- 16	conforme ISO 10694 (2008)				
Les paramètres	Prétraitement pour analyses d	es métaux				page 1 de 5				

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	9,1	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	38	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,1	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	9,9	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	21	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
A cánanht dàna	ma/ka Me	-0.0E0	0.05		óquivalent à NE EN 16191

DADDODT DIAMAL VOCO					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES			5			
n° Cde		2310 BC22-4775	Projet: C	SSPSE222	2204 Frejus	
N° échant.	466	571 Solide / Eluat				
Spécification des échantillons	P5	: 0,4-1,1				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale		0			NF-EN	16174; NF EN 13657 (déchets)
Métaux						(doonoto)
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, EN
Arsenic (As)	mg/kg Ms	9,1	1	+/- 15	Conforme	16174 à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	38	1	+/- 12	Conforme	16174 à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1	17 12		16174 à EN-ISO 11885, EN
· ·						16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12		à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,1	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
Nickel (Ni)	mg/kg Ms	9,9	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Plomb (Pb)	mg/kg Ms	21	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, El
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, El
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	Conforme	16174 à EN-ISO 11885, El
				17 22		16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050			· · · · · · · · · · · · · · · · · · ·	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			éguival	ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Composés aromatiques					1 1	
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
	mg/kg Ms			+		
Ethylbenzène		<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10				ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155

Composés a	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	17.08.202
RAPPORT D'ANALYSES					N° Client	3500654
	44000	10 DOOG 4775	D==:=4: O	00000000	0004 Ending	
n° Cde		10 BC22-4775	Projet: C	55P5E222	2204 Frejus	
N° échant.		1 Solide / Eluat				
Spécification des échantillons	P5 : 0,	4-1,1				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode)
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms mg/kg Ms	<0,03	0,05			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
	gg					100 22100
Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			e à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4			e à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	23,8	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	3,2	2	+/- 21		ISO 16703
Fraction C20-C24	*) mg/kg Ms	3,2	2	+/- 21		ISO 16703
Fraction C24-C28	*) mg/kg Ms	4,6	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	4,9	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	3,3	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.				IEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				IEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (153)	mg/kg Ms mg/kg Ms	<0,001 <0,001	0,001 0,001			IEN-EN 16167
PCB (180)	_	<0,001	0,001		I N	IEN-EN 16167
Analyses sur éluat après lixiv				1	1 -	
L/S cumulé	ml/g	10,0	0,1		Seld	on norme lixiviation

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	23,8	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	3,2	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	3,2	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	4,6	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	4,9	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	3,3	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

ב ם	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167	
ו ט	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167	
_	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
_	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
2	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
מ	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
ğ	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
<u>_</u>	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	
ĭ	PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167	

Analyses sur é	luat après lixiviation
----------------	------------------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

17.08.2022 Date N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du N° échant. 466571 Solide / Eluat

Spécification des échantillons P5: 0,4-1,1

	Unité		Limite Quant.	Résultat %	Méthode
Conductivité électrique	μS/cm	610	5	+/- 10	Selon norme lixiviation
pH		8,1	0	+/- 5	Selon norme lixiviation
Température	°C	20,5	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	530	100	+/- 22	Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l < 0	,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	4,7	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	240	5	+/- 10	Conforme à ISO 15923-1
₹	COT	mg/l	3,6	1	+/- 10	conforme EN 16192

	sur		

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	17	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	11	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466571 Solide / Eluat

Spécification des échantillons P5 : 0,4-1,1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466572 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P9:0-1

0,1 1 1 0 0,01	+/- 1	Selon norme lixiviation Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne NEN-EN 15934; EN1288
1 1 0 0,01	+/- 1	Selon norme lixiviation NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne
0 0,01	+/- 1	NF EN 12457-2 Selon norme lixiviation Conforme à NEN-EN 16179 méthode interne
0,01	+/- 1	Selon norme lixiviation Conforme à NEN-EN 1617 méthode interne
0,01	+/- 1	Conforme à NEN-EN 1617 méthode interne
0,01	+/- 1	méthode interne
0,01	+/- 1	méthode interne
1000	+/- 1	méthode interne
1000	+/- 1	
1000	+/- 1	NEN-EN 15934 ; EN1288
		Selon norme lixiviation
		Selon norme lixiviation
0,05		Selon norme lixiviation
0,1		Selon norme lixiviation
		Selon norme lixiviation
1		Selon norme lixiviation
0,02		Selon norme lixiviation
10		Selon norme lixiviation
0,02		Selon norme lixiviation
1		Selon norme lixiviation
0,1		Selon norme lixiviation
0,0003		Selon norme lixiviation
0,05		Selon norme lixiviation
50		Selon norme lixiviation
0,02		Selon norme lixiviation
0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
1000	+/- 16	conforme ISO 10694 (2008
	0,001 1 0,02 10 0,02 1 0,1 0,0003 0,05 0,05 0,05 0,05 0,05 0,05 0,05	0,001 1 0,02 10 0,02 1 0,1 0,0003 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05

page 1 de 5

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	47	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	14	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	9,3	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	9,3	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	45	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

RAPPORT D'ANALYSES					Date N° Client	17.08.202 350065
n° Cde	110221	0 DC22 4775	Droiot: C	eeneenna	204 Eráina	
		0 BC22-4775	Projet. C	,33P3E222	204 Fiejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P9 : 0-1					
	11.27	D	Limite	Incert.	8.8 771 1	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, E
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme	16174 à EN-ISO 11885, El
Baryum (Ba)	mg/kg Ms	47	1	+/- 12	Conforme	16174 à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	14	0,2	+/- 12		16174 à EN-ISO 11885, E
						16174
Cuivre (Cu)	mg/kg Ms	9,3	0,2	+/- 20		à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	9,3	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	15	0,5	+/- 11	Conforme	à EN-ISO 11885, E
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	45	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
			•	.,		16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05	/		ent à NF EN 1618
Phénanthrène	mg/kg Ms	0,38	0,05	+/- 20		ent à NF EN 1618
Anthracène	mg/kg Ms	0,35	0,05	+/- 24		ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,71	0,05	+/- 17		ent à NF EN 1618
Pyrène	mg/kg Ms	0,58	0,05	+/- 19		ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,31	0,05	+/- 14		ent à NF EN 1618
Chrysène	mg/kg Ms	0,38	0,05	+/- 14	équival	ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,25	0,05	+/- 12	équival	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	0,14	0,05	+/- 14	équival	ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,29	0,05	+/- 14	équival	ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	0,18	0,05	+/- 14	équival	ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,18	0,05	+/- 17		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	1,75	,			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	2,92 ×)				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	3,75 ×)				ent à NF EN 1618
Composés aromatiques	<u> </u>					
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050				
-			0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	+		ISO 22155
o-Xylène	mg/kg Ms mg/kg Ms	<0,050 <0,10	0,05 0,1			ISO 22155
Naphtalène	Ima/ka N/le	-0.40	() 4	1	1	ISO 22155

Composés :	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

ués du symbole " *) ". N° échant. 466572 Solide / Eluat

n echani.	400372	Solide / Elual			
Spécification des échantillons	P9 : 0-1				
Spécification des échantillons	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhylène Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,025	0,025		ISO 22155
	mg/kg Ms	<0,10	0,1		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020		ISO 22155
	<u> </u>				100 22 100
Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction C8-C10 Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms	-0.20	0,2		conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<0,20 <1,0 ^{x)}			conforme à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<0,40 ^{x)}	1 0.4		conforme à NEN-EN-ISO 16558-
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4 0,4		conforme à NEN-EN-ISO 16558-
Fraction Co-C10 Fraction aliphatique >C6-C8	mg/kg Ms	<0,40 %	0,4		conforme à NEN-EN-ISO 16558-
Fraction ariginatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-
Fraction alighetique > C9 C10	mg/kg Ms	•	0,2		conforme à NEN-EN-ISO 16558-
	mg/kg Ms	<0,20 <0,20	0,2		conforme à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms	250	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	+/- 21	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16 Fraction C16-C20 Fraction C20-C24	*) mg/kg Ms	11,3	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	27,4	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	97,9	2	+/- 21	ISO 16703
Fraction C20-C24 Fraction C24-C28 Fraction C28-C32 Fraction C32-C36	*) mg/kg Ms	69	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	29,3	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	7.6	2	+/- 21	ISO 16703
Dalamak Lawa k tank tana da a	1119/119 1415	7,0		T/- Z I	130 10703
Polychlorobiphényles					NEW EN 40455
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52)	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	0.001		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
_ T OD (32)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167		
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167		
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
✓ PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
% PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
© PCB (118) PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
= IPUD [133]	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167		
	Analyses sur éluat après lixiviation					
En Analyses sur éluat après lixi	ml/g	10,0	0,1	Selon norme lixiviation		
Les				page 3 de 5		

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466572 Solide / Eluat

Spécification des échantillons P9 : 0-1

	Unité		₋imite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	640	5	+/- 10	Selon norme lixiviation
pH		11,0	0	+/- 5	Selon norme lixiviation
Température	°C	20,4	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	340	100	+/- 22	Equivalent à NF EN ISO 15216
201	Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l < 0	,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	72	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	79	5	+/- 10	Conforme à ISO 15923-1
≦	COT	mg/l	1,1	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,2	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	13	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	2,9	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	4,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	24	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 13.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5
TESTING
RVA L 005

C-13-189/0418-FR-F/9

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466572 Solide / Eluat

Spécification des échantillons P9 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

GROLAB **GROUP**

Your labs. Your service.

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466573 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Crécification des échantilles

Spécification des échantillons	P9 :	1-2			
Lixiviation Fraction >4mm (EN12457-2) Masse brute Mh pour lixiviation Lixiviation (EN 12457-2) Volume de lixiviant L ajouté pour l'extraction	Unité	Résulta	Limite t Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 0			Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 12	0 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	90	0 1		Selon norme lixiviation
Prétraitement des échantillor	าร				
Masse échantillon total inférieure à 2 kg	kg	° 0,6	7 0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Matière sèche	%	° 77	0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions soluble Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S) Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S) Fluorures cumulé (var. L/S) Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	s				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	460	0 1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0			Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,0			Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,1			Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,00			Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	71			Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	2 0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	1	4 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,0	4 0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	4			Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0	1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,000	3 0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,2	4 0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	5 0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	5 0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0			Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	150			Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	2 0,02		Selon norme lixiviation
Analyses Physico-chimiques	,				
pH-H2O		° 10	5 0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	1500	0 1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses	des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)

page 1 de 5 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Quant.	Résultat %	Méthode
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	36	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,6	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	1,0	1	+/- 10	Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	7,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	37	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
nvuiocaibuies	Albillalluuts	FUIVEVCIIUU U S	แอบา

					Date N° Client	17.08.20 350065
RAPPORT D'ANALYSES						
n° Cde	1182310 E	3C22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.		olide / Eluat	•		•	
Spécification des échantillons	P9 : 1-2					
-			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, E
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme	<u>16174</u> à EN-ISO 11885, E
Baryum (Ba)	mg/kg Ms	36	1	+/- 12	Conforme	16174 à EN-ISO 11885, E
				7/- 12		16174 à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1			16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme	à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	7,6	0,2	+/- 20	Conforme	à EN-ISO 11885, E
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme	16174 e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	1,0	1	+/- 10	Conforme	16174 à EN-ISO 11885, E
` '		·				16174
Nickel (Ni)	mg/kg Ms	7,2	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	37	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
			•	.,		16174
Hydrocarbures Aromatiques						. ` NE EN 4040
Naphtalène	mg/kg Ms mg/kg Ms	<0,050 <0,050				nt à NF EN 1618 nt à NF EN 1618
Acénaphtylène Acénaphtène	mg/kg Ms	0,030	0,05	+/- 11		nt à NF EN 1618
Fluorène	mg/kg Ms	0,13	0,05	+/- 46		nt à NF EN 1618
Phénanthrène	mg/kg Ms	1,6	0,05	+/- 20		nt à NF EN 1618
Anthracène	mg/kg Ms	1,1	0,05	+/- 24		nt à NF EN 1618
Fluoranthène	mg/kg Ms	1,8	0,05	+/- 17		nt à NF EN 1618
Pvrène	mg/kg Ms	1,4	0,05	+/- 19		nt à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,68	0,05	+/- 14		nt à NF EN 1618
Chrysène	mg/kg Ms	0,77	0,05	+/- 14		nt à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,75	0,05	+/- 12		nt à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	0,73	0,05	+/- 14		nt à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,69		+/- 14		nt à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	T/- 14		nt à NF EN 1618
	mg/kg Ms		0,05	+/- 14		nt à NF EN 1618
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,48		+/- 14		nt à NF EN 1618
		0,38	0,05	+/- 17		
HAP (6 Borneff) - somme	mg/kg Ms	4,40				nt à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	7,80 x)				nt à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	10,2 ×)			equivale	nt à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050				SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155
Somme Xylènes	mg/kg Ms	n.d.				SO 22155
BTEX total	*) mg/kg Ms					SO 22155

Com	nnosés	aromatiques
UU 11	iposes	aioiiiatiques

_	Composes aromanques				
ğ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
0	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
5	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
Ď	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ß	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ĭ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
g	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
2	BTEX total	mg/kg Ms	n.d.		ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
COHV					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	·		ISO 22155

Hyd	Irocarbures	totalix	(ISO)

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	290	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	9,5	4	+/- 21	ISO 16703
Fraction C16-C20	mg/kg Ms	17,0	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	33,4	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	110	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	74	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	25,3	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	5,2	2	+/- 21	ISO 16703

Polychlorobiphényles

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde	118231	0 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	466573	Solide / Eluat			-	
Spécification des échantillons	P9 : 1-					
specification dee contantificité		-	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	Э
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05 0,05			ISO 22155 ISO 22155
1,1,2-Thenloroethane	mg/kg Ms mg/kg Ms	<0,05 <0,10	0,05			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,020			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	-,			ISO 22155
Hydrocarbures totaux (ISO)					•	
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			e à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conform	e à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	290	20	+/- 21		ISO 16703
	*) mg/kg Ms	<4,0	4	. / 04		ISO 16703
Fraction C12-C16	*) mg/kg Ms *) mg/kg Ms	9,5	4	+/- 21		ISO 16703
	*) mg/kg Ms	17,0 33,4	2	+/- 21 +/- 21		ISO 16703 ISO 16703
Fraction C24-C28	*) mg/kg Ms	110	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	74	2	+/- 21		ISO 16703
	*) mg/kg Ms	25,3	2	+/- 21		ISO 16703
	*) mg/kg Ms	5,2	2	+/- 21		ISO 16703
Polychlorobiphényles		, ,			•	
Somme 6 PCB	mg/kg Ms	n.d.			N	IEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				IEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
Analyses sur éluat après lixiv	riation					
L/S cumulé	ml/g	10,0	0,1		Seld	on norme lixiviation
Conductivité électrique	μS/cm	810	5	+/- 10	Seld	on norme lixiviation
pH		11,0	0	+/- 5	Seld	on norme lixiviation

Analyses sur éluat après lixiviation

ě	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Шe	Conductivité électrique	μS/cm	810	5	+/- 10	Selon norme lixiviation
aga	рН		11,0	0	+/- 5	Selon norme lixiviation

page 3 de 5 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ". n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466573 Solide / Eluat

Spécification des échantillons P9: 1-2

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Température	°C	20,2	0		Selon norme lixiviation
Analyses Physico-chir	niques sur éluat				
Résidu à sec	mg/l	460	100	+/- 22	Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	71	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	150	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,4	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,1	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	11	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	4,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	24	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/I	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 12.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

(2004)

sont

S S

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466573 Solide / Eluat

Spécification des échantillons P9 : 1-2

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466574 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P6:0-1

	Unité	Ré	Limite sultat Quan		Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	0	49,6 0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	100 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	on *) ml		900 1		Selon norme lixiviation
Prétraitement des échantille	ons				
Masse échantillon total inférieure à 2 kg	kg	0	0,63 0		
Prétraitement de l'échantillon	-	•			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	0	88,8 0,0	1 +/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solubl	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1700 100	0	Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05	5	Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0,10 0,0	5	Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0	- 0,1 0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0	0,001 0,00	1	Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		250 1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 -	0,02 0,02	2	Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		12 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,03 0,02	2	Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		5,0 1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0	- 0,1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,000	03	Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,08 0,08	5	Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05	5	Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05	5	Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05	5	Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		400 50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 -	0,02 0,02	2	Selon norme lixiviation
Analyses Physico-chimique	es				
pH-H2O		0	8,8 0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	<u> </u>	5700 100	0 +/- 16	conforme ISO 10694 (2008

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	9,1	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	36	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	12	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,6	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	7,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	12	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	35	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarbures	Aromatiques	Polycycliques	(ISO)
I I V UI U CAI D UI C S	AI Ullialiuu c s	F OIV CV CIIUU CS	11301

RAPPORT D'ANALYSES					Date N° Client	17.08.20 350065
n° Cde	110001	0 DC22 4775	Droint: C	ecperana	2004 Fráina	
		0 BC22-4775	Projet. C	,33P3E222	204 Fiejus	
N° échant.		Solide / Eluat				
Spécification des échantillons	P6 : 0-1					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657 (déchets)
Métaux						
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, E
Arsenic (As)	mg/kg Ms	9,1	1	+/- 15	Conforme	16174 à EN-ISO 11885, E
Baryum (Ba)	mg/kg Ms	36	1	+/- 12	Conforme	16174 à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	12	0,2	+/- 12		16174 à EN-ISO 11885, E
						16174
Cuivre (Cu)	mg/kg Ms	8,6	0,2	+/- 20		à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05			e à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E 16174
Nickel (Ni)	mg/kg Ms	7,7	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	12	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	35	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
Hydrocarbures Aromatique	s Polycycliques (I	SO)				16174
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	0,18	0,05	+/- 20		ent à NF EN 1618
Anthracène	mg/kg Ms	0,098	0,05	+/- 24		ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,28	0,05	+/- 17		ent à NF EN 1618
Pyrène	mg/kg Ms	0,21	0,05	+/- 19		ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,15	0,05	+/- 14		ent à NF EN 1618
Chrysène	mg/kg Ms	0,14	0,05	+/- 14		ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,12	0,05	+/- 12		ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,14	0,05	+/- 14		ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	.,		ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	0,098	0,05	+/- 14		ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,030	0,05	+/- 17		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,748 ×)	0,00	17 17		ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	1,20 ×)				ent à NF EN 1618
		1,53 ×)				ent à NF EN 1618
HAP (EPA) - somme Composés aromatiques	mg/kg Ms	1,53 "			equival	υπα ΝΓ ΕΝ 1010
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène			0,05	+		
	mg/kg Ms	<0,050				ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	1	1	ISO 22155

22	Composes aromanques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
a	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
g	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

page 2 de 5

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

qués du symbole " *) ". N° échant. 466574 Solide / Eluat

Spécification des échantillons	P6 : 0-1				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane	mg/kg Ms	n.d.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.			ISO 22155
COHV					·
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Fraction aliphatique C5-C6 Fraction C5-C10 Fraction C8-C10 Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	<u>0,</u> 1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	65,1	20	+/- 21	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4		ISO 16703
	*) mg/kg Ms	3,6	2	+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	7,0	2	+/- 21	ISO 16703
Fraction C24-C28	*) mg/kg Ms	24,4	2	+/- 21	ISO 16703
	*) mg/kg Ms	18	2	+/- 21	ISO 16703
Fraction C32-C36	*) mg/kg Ms	7,7	2	+/- 21	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2		ISO 16703
Polychlorobiphényles					
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52)	mg/kg Ms	n.d.			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
	mg/kg Ms	<0,001	0,001		NEN-EN 16167
DCD (101)	ma/ka Ma	-0.004	0.001		NICNI CNI 16167

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Analyses sur éluat après li	xiviation			
L/S cumulé	ml/g	10,0	0,1	Selon norme lixiviation

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466574 Solide / Eluat

Spécification des échantillons P6 : 0-1

	Unité		mite uant.	Résultat %	Méthode
Conductivité électrique	μS/cm	250	5	+/- 10	Selon norme lixiviation
рН		9,6	0	+/- 5	Selon norme lixiviation
Température	°C	19,9	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

בוב	Résidu à sec	mg/l	170	100	+/- 22	Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
פֿ	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	25	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	40	5	+/- 10	Conforme à ISO 15923-1
≟	COT	mg/l	1,2	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	9,7	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	7,7	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466574 Solide / Eluat

Spécification des échantillons P6 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466575 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P8:0-1

			Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	29,2	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillor	ns					
Masse échantillon total inférieure à 2 kg	kg	0	0,65	0		
Prétraitement de l'échantillon		0	·			Conforme à NEN-EN 1617
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	88,8	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	S					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1300	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/Ś)	*) mg/kg Ms		0,13	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		120	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		24	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,07	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		9,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		140	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	5					
pH-H2O		0	8,5	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		11000	1000	+/- 16	conforme ISO 10694 (2008

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

·	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Baryum (Ba)	mg/kg Ms	66	1	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	17	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	17	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Nickel (Ni)	mg/kg Ms	10	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	29	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	51	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	ma/ka Ms	<0.050	0.05		éguivalent à NF EN 16181

DARRORT BIANAL VOES					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES		•	5			
n° Cde		0 BC22-4775	Projet: C	SSPSE222	204 Fréjus	
N° échant.	466575	Solide / Eluat				
Spécification des échantillons	P8 : 0-	1				
•			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657
Métaux						(déchets)
Antimoine (Sb)	mg/kg Ms	<0,5	0,5		Conforme	à EN-ISO 11885, EN
<u> </u>	mg/kg Ms			+/- 15		16174 à EN-ISO 11885, EN
Arsenic (As)		10	1			16174
Baryum (Ba)	mg/kg Ms	66	1	+/- 12		à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	17	0,2	+/- 12	Conforme	à EN-ISO 11885, EN
Cuivre (Cu)	mg/kg Ms	17	0,2	+/- 20	Conforme	16174 à EN-ISO 11885, EN
Mercure (Hg)	mg/kg Ms	<0,05			Conform	16174 e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, EN
` '						16174
Nickel (Ni)	mg/kg Ms	10	- , -	+/- 11		à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	29	0,5	+/- 11	Conforme	à EN-ISO 11885, Et 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, El 16174
Zinc (Zn)	mg/kg Ms	51	1	+/- 22	Conforme	à EN-ISO 11885, El
Hydrocarbures Aromatiques	Polycycliques (ISO)				16174
Naphtalène	mg/kg Ms	<0,050	0,05		óquival	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050				ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050				ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050				ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050				ent à NF EN 16181
						ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050				
Fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050				ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050				ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050				ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050			équival	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équival	ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Composés aromatiques	, 5 5 -				1 - 1-	
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050				ISO 22155
	mg/kg Ms			+		
Ethylbenzène		<0,050				ISO 22155
m,p-Xylène	mg/kg Ms	<0,10				ISO 22155
o-Xylène	mg/kg Ms	<0,050				ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155

Composés :	aromatiques
------------	-------------

22	Composes aromatiques				
ESE	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
eg	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
jet	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
ä	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ba	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

					Date	17.08.202
DADDODT DIANAL VOCO					N° Client	3500654
RAPPORT D'ANALYSES						
n° Cde		3C22-4775	Projet: C	SSPSE222	2204 Fréjus	
N° échant.	466575 Sc	olide / Eluat				
Spécification des échantillons	P8 : 0-1					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	•			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4			à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4			à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	26,4	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	17 21		ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	8,3	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	8,4	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	4,3	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2	.,		ISO 16703
Polychlorobiphényles	3 3 1	12,0			I	
	ma/ka Ma	0 0070 x)			NII	
Somme 6 PCB	mg/kg Ms	0,0070 x)				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0090 x)	0.004			EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	1/ 24		EN-EN 16167
PCB (101)	mg/kg Ms	0,003	0,001	+/- 34		EN-EN 16167
PCB (118)	mg/kg Ms	0,002	0,001	+/- 19		EN-EN 16167
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30		EN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22		EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		Ni	EN-EN 16167
Analyses sur éluat après lixiv				<u> </u>		
L/S cumulé	ml/g	10,0	0,1		Selor	n norme lixiviation

Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	26,4	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	mg/kg Ms	8,3	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	8,4	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	4,3	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

_						
פַּ	Somme 6 PCB	mg/kg Ms	0,0070 x)			NEN-EN 16167
ves:	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0090 x)			NEN-EN 16167
-	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
2	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
pa	PCB (52) PCB (101)	mg/kg Ms	0,003	0,001	+/- 34	NEN-EN 16167
ses	PCB (118)	mg/kg Ms	0,002	0,001	+/- 19	NEN-EN 16167
realises	PCB (138)	mg/kg Ms	0,002	0,001	+/- 30	NEN-EN 16167
	PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167
rres	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167

Analyses sur é	luat après	lixiviation
----------------	------------	-------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *) ".

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466575 Solide / Eluat

Spécification des échantillons P8 : 0-1

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	140	5	+/- 10	Selon norme lixiviation
рН		8,1	0	+/- 5	Selon norme lixiviation
Température	°C	20,7	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

, ה	Résidu à sec	mg/l	130	100	+/- 22	Equivalent à NF EN ISO 15216
ממ	Fluorures (F)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	12	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	14	5	+/- 10	Conforme à ISO 15923-1
₹	COT	mg/l	2,4	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	13	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	7,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l'expression de l'incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

IESTING
RVA L 005

B

es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466575 Solide / Eluat

Spécification des échantillons P8 : 0-1

AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

BURGEAP (AVIGNON 84) Madame Florence DEVIC 143 Avenue de Verdun 92130 ISSY-LES-MOULINEAUX **FRANCE**

> Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

n° Cde 1182310 BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466576 Solide / Eluat

Date de validation 08.08.2022

Prélèvement 05.08.2022 14:46

Prélèvement par: Client Spécification des échantillons P8:1-2

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	12,9	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	ml *)		900	1		Selon norme lixiviation
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	•	0,64	0		
Prétraitement de l'échantillon	-	•				Conforme à NEN-EN 1617
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	87,5	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	s					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		30	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		18	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,05	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		11	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		53	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	6					
pH-H2O		0	8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		8600	1000	+/- 16	conforme ISO 10694 (2008

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES						
n° Cde	1182310	BC22-4775	Proiet: C	SSPSE222	2204 Fréius	
N° échant.		Solide / Eluat	,			
Spécification des échantillons	P8 : 1-2	Condo / Lidat				
Specification des echantilloris	FO. 1-2		Limito	Incort		
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657
						(déchets)
Métaux		_1				
Antimoine (Sb)	mg/kg Ms	0,5	0,5	+/- 10	Conforme	à EN-ISO 11885, EN 16174
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme	à EN-ISO 11885, EN
Baryum (Ba)	mg/kg Ms	52	1	+/- 12	Conforme	16174 à EN-ISO 11885, EN
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, EN
. ,		•				16174
Chrome (Cr)	mg/kg Ms	20	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	22	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN
Molybdène (Mo)	mg/kg Ms	<1,0	1		Conforme	16174 à EN-ISO 11885, EN
		•				16174
Nickel (Ni)	mg/kg Ms	12	0,5	+/- 11	Conforme	à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	29	0,5	+/- 11	Conforme	à EN-ISO 11885, EN 16174
Sélénium (Se)	mg/kg Ms	<1,0	1		Conforme	à EN-ISO 11885, EN
Zinc (Zn)	mg/kg Ms	74	1	+/- 22	Conforme	16174 à EN-ISO 11885, EN
ZIIIC (ZII)	ilig/kg ivis	74	'	T/- ZZ	00111011110	16174
Hydrocarbures Aromatique	s Polycycliques (I	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00			ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Composés aromatiques	mg/kg wo	11.0.			Cquivan	SILUTAL EN TOTOT
	ma/ka Ma	-0.050	0.05			CO 224 <i>EE</i>
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155

Hydrocarbures A	Aromatiques	Polycycliques	(180)
nvarocarbures	Aromatiques	Polycycliques	(ISO)

<u> </u>		100 (100)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2 Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181

ĸ	oomposes aromanques				
1	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
פ	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ŭ	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
5	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date N° Client	17.08.202 3500654
RAPPORT D'ANALYSES					iv Oliciti	330003-
n° Cde	1182310	BC22-4775	Projet: C	SSPSE2222	04 Fréjus	
N° échant.		Solide / Eluat	•		•	
Spécification des échantillons	P8 : 1-2	Jonao / Lidat				
Specification des echantillons	10.1-2		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV	ingrig me	11.0.				00 22 100
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme a	à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms *) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20 Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703 ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles	3 3 -	1-,0				<u> </u>
Somme 6 PCB	mg/kg Ms	n.d.			NE	N EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				:N-EN 16167 :N-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			N-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			N-EN 16167
Analyses sur éluat après lixiv		,	,		,	
L/S cumulé	ml/g	10,0	0,1		Selon	norme lixiviation

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

RAPPORT D'ANALYSES

symbole " *)

accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

N° échant. 466576 Solide / Eluat

Spécification des échantillons P8 : 1-2

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Conductivité électrique	μS/cm	98,8	5	+/- 10	Selon norme lixiviation
pH		8,4	0	+/- 5	Selon norme lixiviation
Température	°C	20,6	0		Selon norme lixiviation

Analyses Physico-chimiques sur éluat

בו בו	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
201	Fluorures (F)	mg/I	1,1	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l <	<0,010	0,01		NEN-EN 16192
3	Chlorures (CI)	mg/l	3,0	0,1	+/- 10	Conforme à ISO 15923-1
Ę	Sulfates (SO4)	mg/l	5,3	5	+/- 10	Conforme à ISO 15923-1
≦	COT	mg/l	1,8	1	+/- 10	conforme EN 16192

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	4,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 08.08.2022 Fin des analyses: 15.08.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

page 4 de 5

TESTING
RVA L 005

-13-189/04/18-FR-P39

B

es paramètres réalisés par AL-West

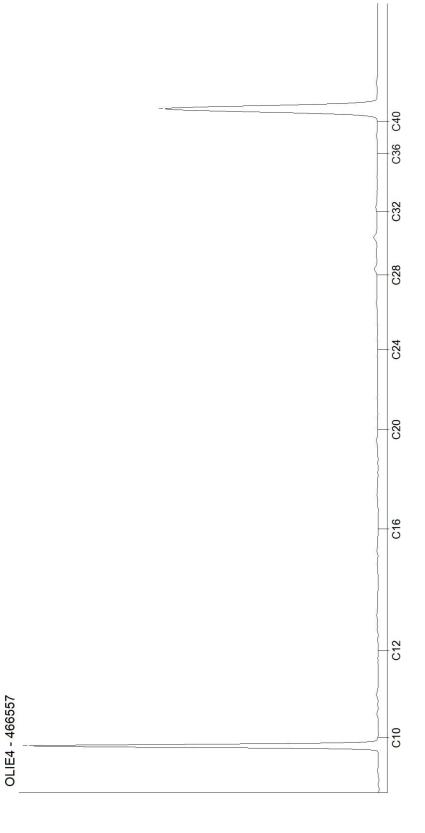
AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

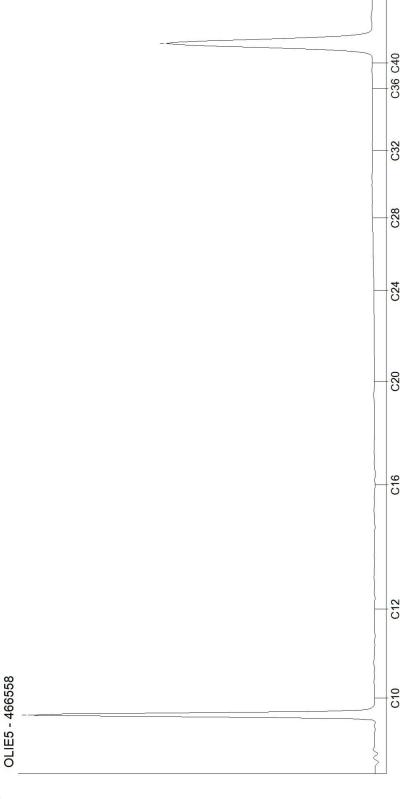
e-Mail: info@al-west.nl, www.al-west.nl

Date 17.08.2022 N° Client 35006542

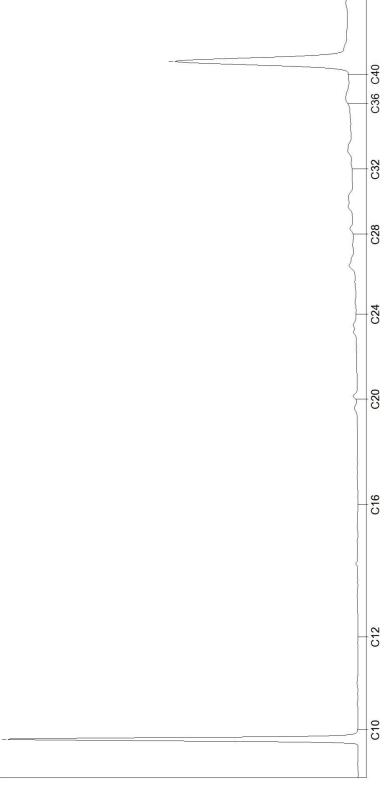
RAPPORT D'ANALYSES

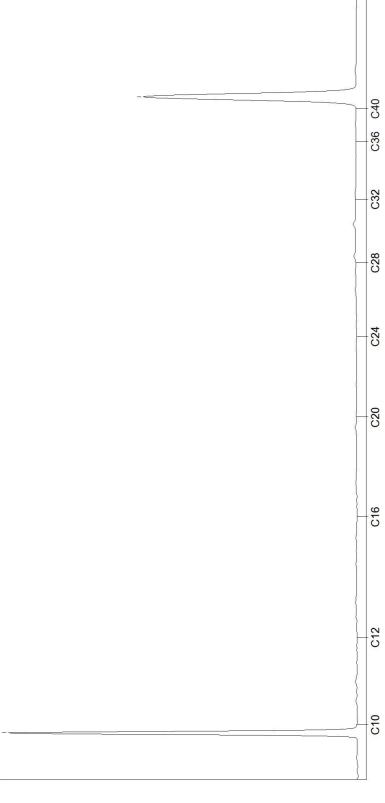

n° Cde **1182310** BC22-4775 Projet: CSSPSE222204 Fréjus

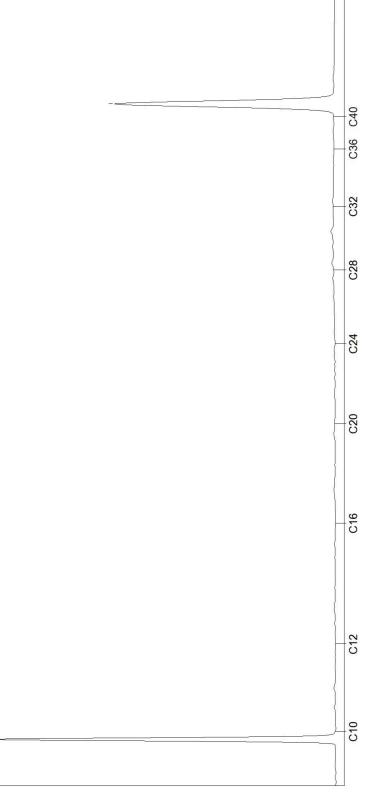
N° échant. 466576 Solide / Eluat

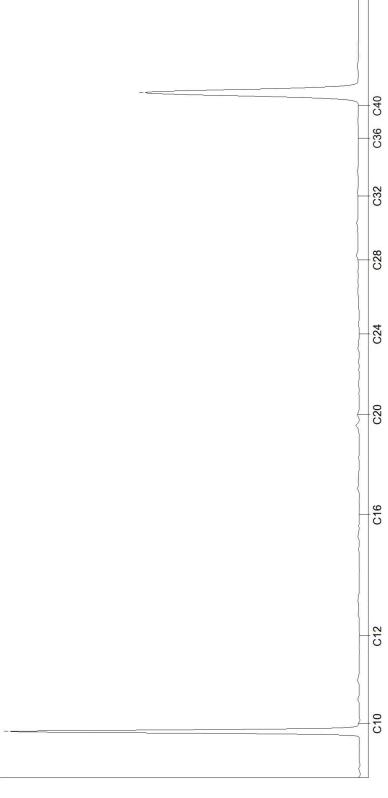

Spécification des échantillons P8 : 1-2

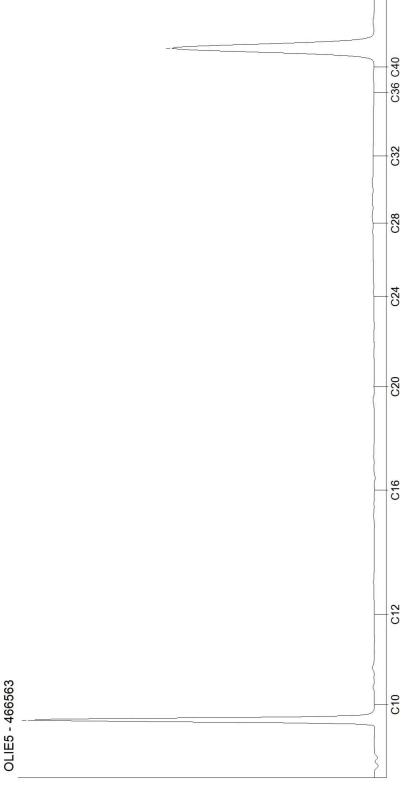
AL-West B.V. Melle Mylène Magnenet, Tel. +33/380680156 Chargée relation clientèle

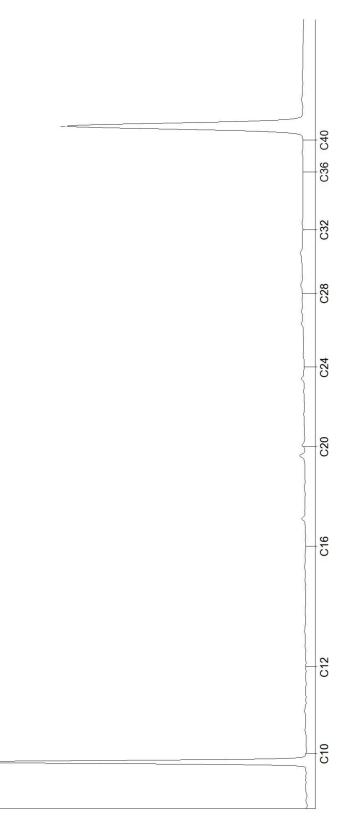

CHROMATOGRAM for Order No. 1182310, Analysis No. 466557, created at 12.08.2022 12:54:25 Nom d'échantillon: P1: 0-1

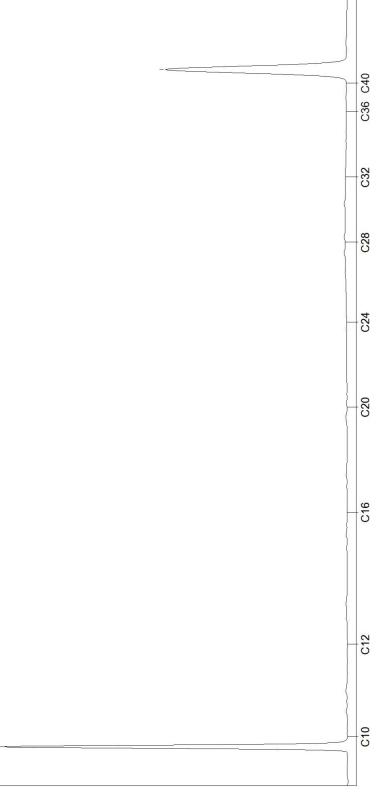

CHROMATOGRAM for Order No. 1182310, Analysis No. 466558, created at 12.08.2022 07:05:47 Nom d'échantillon: P3: 0-1

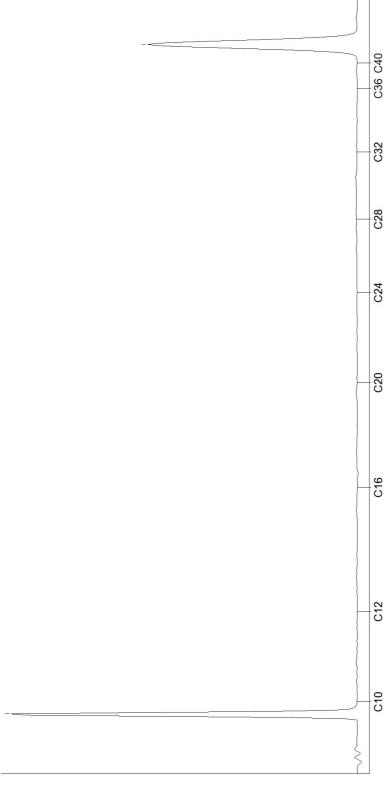

CHROMATOGRAM for Order No. 1182310, Analysis No. 466559, created at 12.08.2022 12:54:25 Nom d'échantillon: P3:1-2


CHROMATOGRAM for Order No. 1182310, Analysis No. 466560, created at 12.08.2022 12:54:25 Nom d'échantillon: P13 : 0-1


CHROMATOGRAM for Order No. 1182310, Analysis No. 466561, created at 12.08.2022 12:54:25 Nom d'échantillon: P12 : 0-1

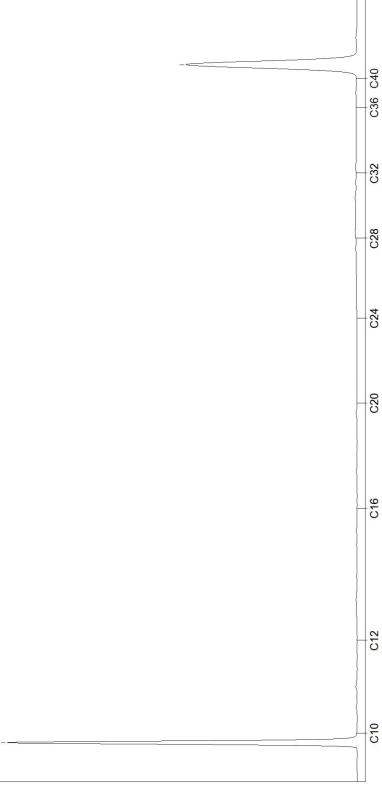

CHROMATOGRAM for Order No. 1182310, Analysis No. 466562, created at 12.08.2022 12:54:25 Nom d'échantillon: P15 : 0-0,9


CHROMATOGRAM for Order No. 1182310, Analysis No. 466563, created at 12.08.2022 07:05:47 Nom d'échantillon: P14 : 0-0,7

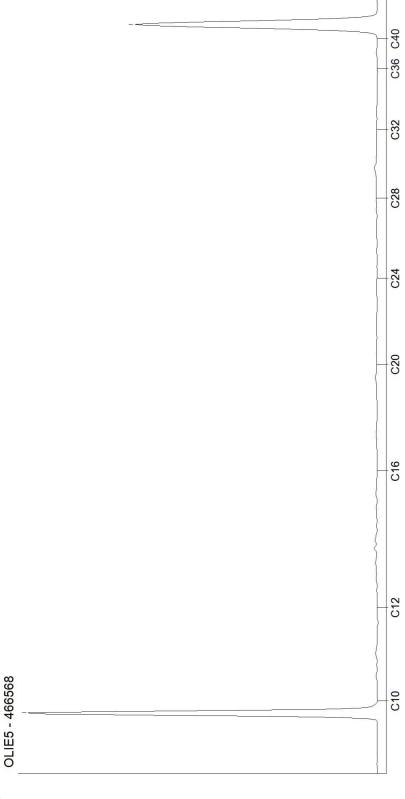

CHROMATOGRAM for Order No. 1182310, Analysis No. 466564, created at 12.08.2022 12:54:25 Nom d'échantillon: P7: 0-1

CHROMATOGRAM for Order No. 1182310, Analysis No. 466565, created at 12.08.2022 12:54:25 Nom d'échantillon: P7:1-2

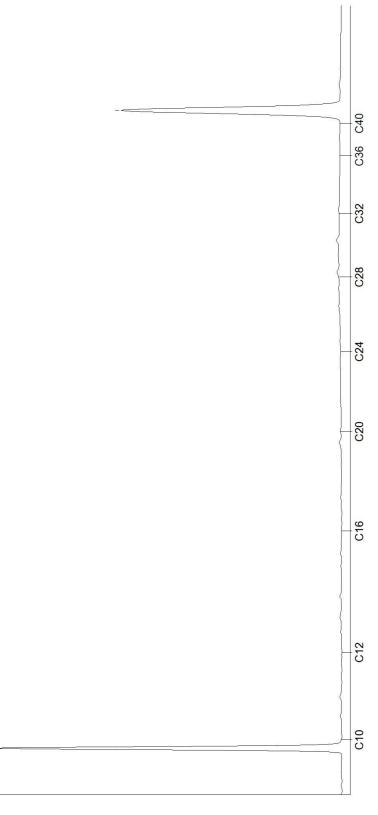
CHROMATOGRAM for Order No. 1182310, Analysis No. 466566, created at 12.08.2022 07:05:47 Nom d'échantillon: P4 :0-1

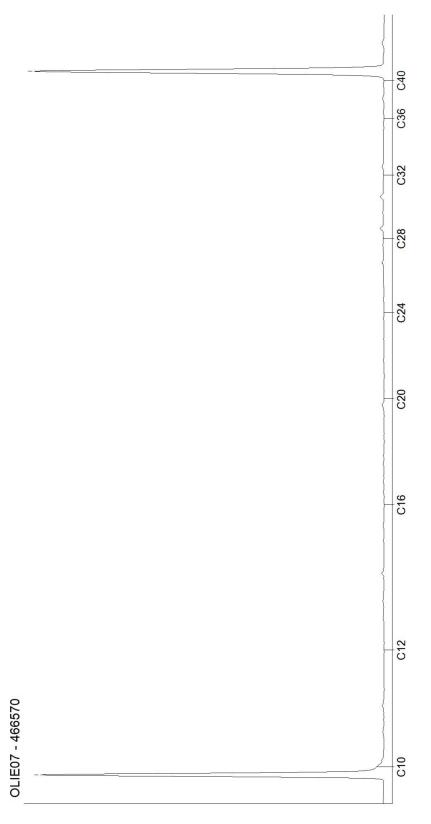


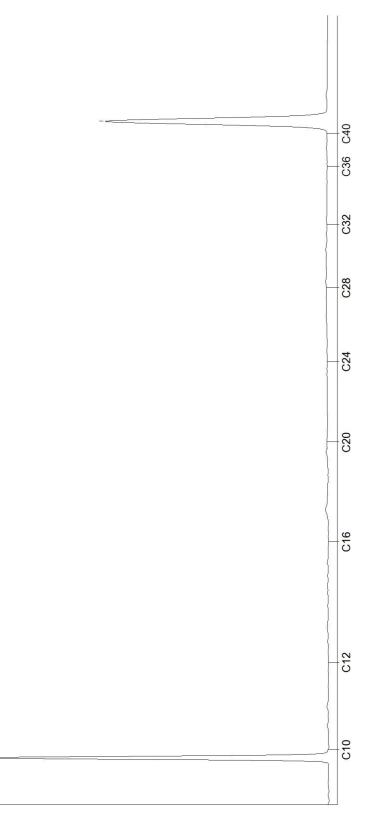
OLIE5 - 466566

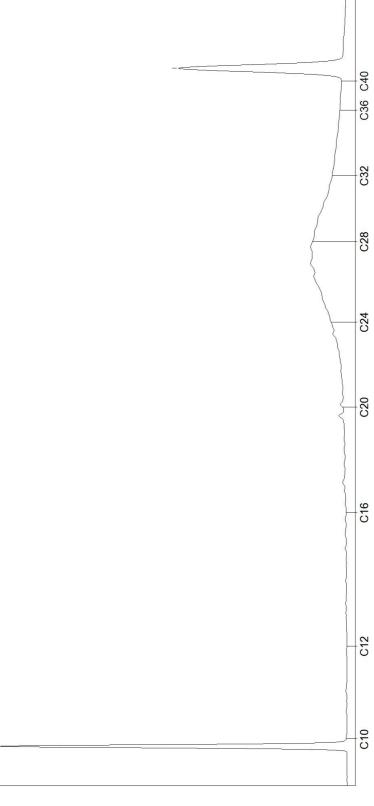

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

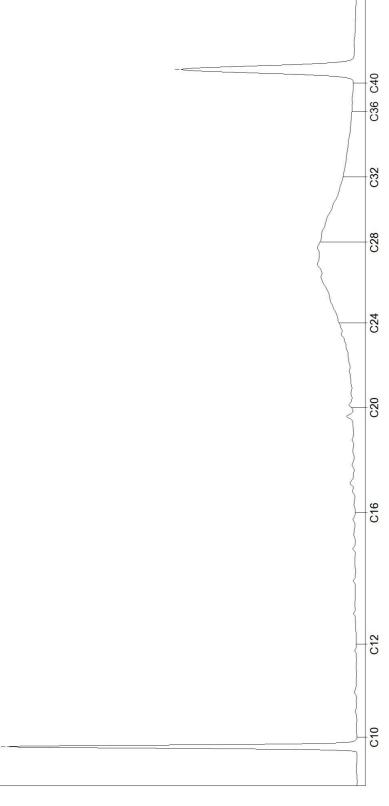
e-Mail: info@al-west.nl, www.al-west.nl

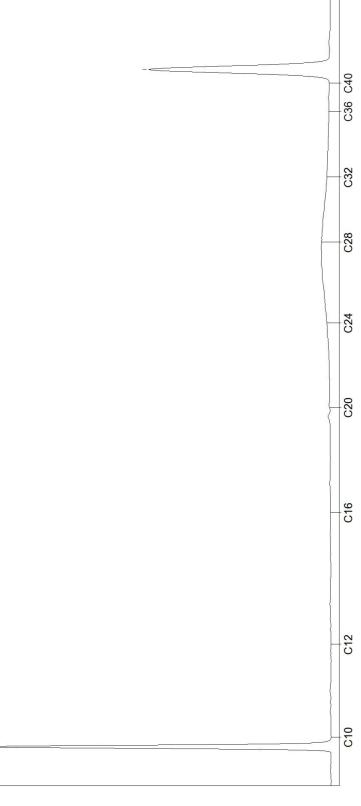

CHROMATOGRAM for Order No. 1182310, Analysis No. 466567, created at 12.08.2022 12:54:25 Nom d'échantillon: P4:1-1,4

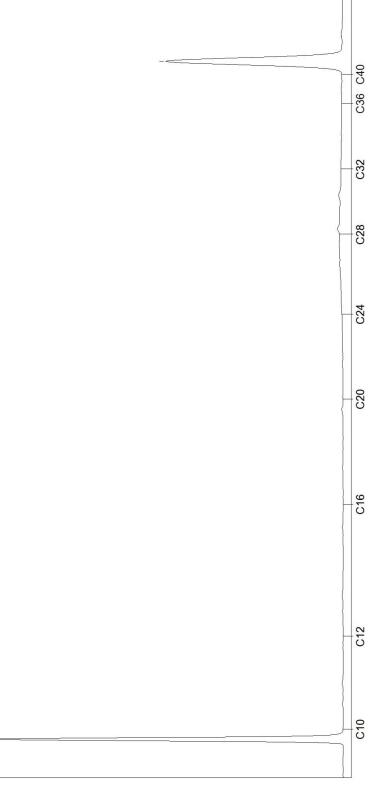

CHROMATOGRAM for Order No. 1182310, Analysis No. 466568, created at 12.08.2022 07:05:47 Nom d'échantillon: P11 : 0-0,8

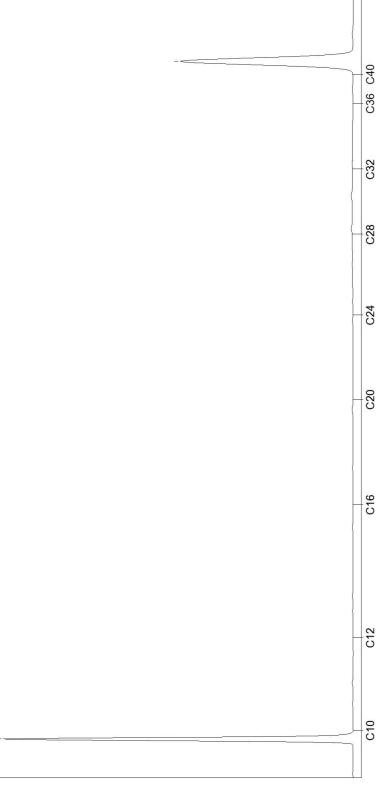

CHROMATOGRAM for Order No. 1182310, Analysis No. 466569, created at 12.08.2022 12:54:25 Nom d'échantillon: P2 : 0-1


CHROMATOGRAM for Order No. 1182310, Analysis No. 466570, created at 12.08.2022 12:58:32 Nom d'échantillon: P10 : 0-0,8


CHROMATOGRAM for Order No. 1182310, Analysis No. 466571, created at 12.08.2022 12:54:25 Nom d'échantillon: P5 : 0,4-1,1


CHROMATOGRAM for Order No. 1182310, Analysis No. 466572, created at 12.08.2022 12:54:25 Nom d'échantillon: P9 : 0-1


CHROMATOGRAM for Order No. 1182310, Analysis No. 466573, created at 12.08.2022 12:54:25 Nom d'échantillon: P9 : 1-2


CHROMATOGRAM for Order No. 1182310, Analysis No. 466574, created at 12.08.2022 12:54:25 Nom d'échantillon: P6 : 0-1

CHROMATOGRAM for Order No. 1182310, Analysis No. 466575, created at 12.08.2022 12:54:26 Nom d'échantillon: P8 : 0-1

CHROMATOGRAM for Order No. 1182310, Analysis No. 466576, created at 12.08.2022 12:54:26 Nom d'échantillon: P8 : 1-2

Annexe 6. Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle): Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable) : Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé): Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (Composés organo-halogénés volatils): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour l'Île de France, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants.

HCT (Hydrocarbures Totaux) : Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger) : Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT) ; la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.